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Introduction

These are notes on the category theory background needed to
read: Maximilian Hadek, Tomáš Jakl, and Jakub Opršal. “A
categorical perspective on constraint satisfaction: The
wonderland of adjunctions.” In: arXiv e-prints (Mar. 2025).
arXiv: 2503.10353 [cs.LO]

https://arxiv.org/abs/2503.10353


Introduction

Relational structures as presheaves
Nerve of a category
Nerve of a functor
Discrete Grothendieck construction
Kan extensions



Relational structures as presheaves

A combinatorial graph may be thought of as a set V of
vertices, a set E of edges, and a pair of maps s : E → V and
t : E → V where s(e) and t(e) are the source and target of
the directed edge e.
This can be thought of as a functor from the diagram

V E
s

t

to the category Set.



Relational structures as presheaves

We could also think of a graph as a contravariant functor from

V E
s

t

to the category Set.
That is, a functor A : Sop → Set.



Relational structures as presheaves

We introduce the opposite category in order to think of a
graph as a presheaf.
A D-valued presheaf on C is a functor of the form
F : C op → D .
These generalize sheaves from geometry.
A standard example is the sheaf of smooth functions on a
manifold M , where C is the lattice of open sets of M , D is
the category of rings, and F(U ) is the ring of smooth
functions on an open set U .



Relational structures as presheaves

We can view a (multiply-sorted) relational structure as a
functor A : Sop → Set in a similar manner by taking S to have
one object for each relation and one object for each universe.
Morphisms specify components, as indicated in the binary
case for graphs.



Nerve of a category

Categories can be thought of as structures in this way.
Let ∆ be the category whose objects are the finite chains
[n] = {0, . . . , n − 1} for each n ∈ N and whose morphisms are
isotone maps.
A simplicial set is a functor A : ∆op → Set.



Nerve of a category

Given a category C , we may define a functor (the nerve of C )
N (C ) : ∆op → Set by setting (N (C ))([n]) to be the set of all
sequences of n − 1 composable morphisms

A0 A1 A2 · · · An−1
f1 f2 f3 fn−1

in C .
The morphisms of ∆ allow us to see the composition and
identities of C in N (C ).



Nerve of a functor

Recall that for any category C we have the covariant Yoneda
embedding

よ_ : C → [C op, Set]

given by
よA(B) = C (B,A)

for objects A,B ∈ Ob(C ).



Nerve of a functor

Given a functor F : C → D , the nerve of F is the functor

NF : D → [C op, Set]

given by
NF (A) : C op → Set

where
NF (A) =よA ◦Fop.



Nerve of a functor

For an object B of C this means that

(NF (A))(B) = D(F(B),A).

There is a typo in this definition in the paper.
What does this have to do with the nerve NC of a category
C ?



Nerve of a functor

Let F : ∆ → Cat be the inclusion functor from the simplex
category ∆ to the category of categories Cat.
In this case we have that the nerve of F is a functor

NF : Cat → [∆op, Set].



Nerve of a functor

By definition we have that

NF (C ) : ∆op → Set

is given by

(NF (C ))([n]) = Cat(F([n]),C ) = [[n],C ].

This says that

(NF (C ))([n]) = (N (C ))([n]).

We find that NF (C ) = N (C ), so this generalizes the nerve
construction.



Nerve of a functor

What would it mean for NF to have a left adjoint in this case?
Suppose that G ⊣ NF with G : [∆op, Set] → Cat.
We have a natural bijection

Cat(G(X),Y ) ∼= [∆op, Set](X ,NF (Y ))

where X is a simplicial set and Y is a category.



Nerve of a functor

This means that we have a natural bijection

[G(X),Y ] ∼= [∆op, Set](X ,NF (Y )).

That is, functors from the category G(X) made from the
simplicial set X are in bijective correspondence with simplicial
set morphisms from X to the nerve of the category Y .



Nerve of a functor

This means that we have a natural bijection

[G(X),Y ] ∼= [∆op, Set](X ,NF (Y )).

The category G(X) is the category freely determined by the
“diagram” X . It is the most general category containing
morphisms whose composition obeys the rules indicated by X .
One might say G(X) is the “free category” over X .



Discrete Grothendieck construction

Definition (Grothendieck construction)
Let F : C → Set be a functor. Define

∫
F to be the category

where Ob(
∫
(F)) consists of pairs (s, a) where s ∈ Ob(C ) and

a ∈ F(s) and(∫
F
)
((s, a), (t, b)) = { f : s → t | (F(f ))(a) = b } .

The Grothendieck construction gr(F) is the functor

gr(F) :

∫
F → C

given by (gr(F))(s, a) = s.



Discrete Grothendieck construction

Let’s consider the case of a graph F : Sop → Set.
The category

∫
F has objects (V , v) where v ∈ F(V ) and

(E , e) where e ∈ F(E).
There are morphisms (E , e) → (V , e) which send edges to
their sources and targets.
The functor gr(F) tells us whether an object is a vertex or an
edge.



Kan extensions

Definition ((Global) Kan extension)
Let F : C → C ′ be a functor. Given another category D , let

F∗ : [C ′,D ] → [C ,D ]

be given by
F∗(G) = G ◦ F .

A left adjoint to F∗ is the left Kan extension LanF along F . A
right adjoint to F∗ is the right Kan extension RanF along F .

That is, F∗ =よD(F) and

LanF ⊣よD(F) ⊣ RanF .



Kan extensions

The existence of LanF means that there is a bijection

[C ′,D ](LanF (X),Y ) ∼= [C ,D ](X ,F∗(Y ))

which is natural in functors X : C → D and Y : C ′ → D .
We could fix a functor X : C → D and ask that there exists a
functor LanF (X) : C → D such that this isomorphism is still
natural in Y , even if the left adjoint of F∗ doesn’t exist.



Kan extensions

A functor F : C → D has a colimit if and only if LanK (F)
along K : C → 1 exists. The colimit is
colim(F) = (LanK (F))(∗) where ∗ is the sole object of 1.
Similarly, lim(F) = (RanK (F))(∗) when it exists.
The existence of an adjoint can also be expressed in terms of
the existence of a particular Kan extension.



Kan extensions

Lemma
Given a finite category C , a functor F : C → D , and a finitely
complete category E we have that よE (F) ⊣ RanF exists. If E is
finitely cocomplete then we have the analogous conclusion for
LanF . Both adjoints exist for E = Fin.


