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Introduction

m These are notes on the category theory background needed to
read: Maximilian Hadek, Tomas Jakl, and Jakub Oprsal. “A
categorical perspective on constraint satisfaction: The
wonderland of adjunctions.” In: arXiv e-prints (Mar. 2025).
arXiv: 2503.10353 [cs.LO]
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Relational structures as presheaves

m A combinatorial graph may be thought of as a set V' of
vertices, a set F of edges, and a pair of maps s: £ — V and
t: E — V where s(e) and t(e) are the source and target of
the directed edge e.

m This can be thought of as a functor from the diagram

to the category Set.



Relational structures as presheaves

m We could also think of a graph as a contravariant functor from
S
| Z—
t
to the category Set.
m [hatis, a functor 4: S°°? — Set.



Relational structures as presheaves

m We introduce the opposite category in order to think of a
graph as a presheaf.

m A P-valued presheaf on % is a functor of the form
F:%°° — 9.

m These generalize sheaves from geometry.

m A standard example is the sheaf of smooth functions on a
manifold M, where % is the lattice of open sets of M, & is

the category of rings, and F(U) is the ring of smooth
functions on an open set U.



Relational structures as presheaves

m We can view a (multiply-sorted) relational structure as a
functor A: S°? — Set in a similar manner by taking S to have
one object for each relation and one object for each universe.

m Morphisms specify components, as indicated in the binary
case for graphs.



Nerve of a category

m Categories can be thought of as structures in this way.

m Let A be the category whose objects are the finite chains
[n] ={0,...,n — 1} for each n € N and whose morphisms are
isotone maps.

m A simplicial set is a functor A: A°P — Set.



Nerve of a category

m Given a category ¢, we may define a functor (the nerve of %)
N(%): A°® — Set by setting (N(%))([n]) to be the set of all
sequences of n — 1 composable morphisms

Ao fi fa Ay s frn—1 Ay

in €.

m The morphisms of A allow us to see the composition and
identities of € in N(%).
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Nerve of a functor

m Recall that for any category € we have the covariant Yoneda

embedding
& 1 C — [€P, Set]

given by
£a(B) =% (B, A)

for objects A, B € Ob(%).



Nerve of a functor

m Given a functor F': € — 2, the nerve of F' is the functor
Np: 9 — [€°P, Set]

given by
Np(A): €P — Set

where
NF(A) = J:A OFOp.



Nerve of a functor

m For an object B of & this means that
(Nr(A))(B) = 2(F(B), A).

m There is a typo in this definition in the paper.

m What does this have to do with the nerve Ny of a category
¢



Nerve of a functor

m Let /': A — Cat be the inclusion functor from the simplex
category A to the category of categories Cat.

m In this case we have that the nerve of F is a functor

Np: Cat — [A°P, Set).



Nerve of a functor

m By definition we have that
Np(€): A% — Set
is given by
(Np(%))([n]) = Cat(F([n]),€) = [[n], €].
m This says that
(Np(€))([n]) = (N(%))([n])-

m We find that Np(%¢) = N(%), so this generalizes the nerve
construction.



Nerve of a functor

m What would it mean for Ng to have a left adjoint in this case?
m Suppose that G - Np with G: [A°P,Set] — Cat.
m We have a natural bijection

Cat(G(X), Y) 2 [A°P, Set] (X, Np(Y))

where X is a simplicial set and Y is a category.



Nerve of a functor

m This means that we have a natural bijection
[G(X), Y] = [A%, Set](X, Np (V).

m That is, functors from the category G(X) made from the
simplicial set X are in bijective correspondence with simplicial
set morphisms from X to the nerve of the category Y.



Nerve of a functor

m This means that we have a natural bijection
[G(X), Y] = [A°P, Set](X, Np(Y)).

m The category G(X) is the category freely determined by the
“diagram” X. It is the most general category containing
morphisms whose composition obeys the rules indicated by X.

m One might say G(X) is the “free category” over X.



Discrete Grothendieck construction

Let F: 4 — Set be a functor. Define [ F to be the category
a € F(s) and

where Ob( [(F)) consists of pairs (s, a) where s € Ob(%) and

(/) a0y = (55 11 (F U@

=b}.
The Grothendieck construction gr(F') is the functor

gr(F): /F — €
given by (gr(F))(s,a) = s.



Discrete Grothendieck construction

m Let's consider the case of a graph F': S°P — Set.

m The category [ F has objects (V, v) where v € F(V) and
(E, e) where e € F(E).

m There are morphisms (E, e) — (V, e) which send edges to
their sources and targets.

m The functor gr(F) tells us whether an object is a vertex or an
edge.



Kan extensions

Let F: 4 — ¢’ be a functor. Given another category 2, let

F*: ¢, 9] — [¥¢, 2]
be given by

F*(G)=GoF.

A left adjoint to F™* is the left Kan extension Lang along F. A
right adjoint to F™* is the right Kan extension Ranp along F.

m Thatis, F* = X 4(F) and

Lanp 4 & 4(F) 41 Ranp.



Kan extensions

m The existence of Lany means that there is a bijection
(¢, Z)(Lanp(X), Y) = [€, Z|(X, F*(Y))

which is natural in functors X: € — 2 and Y: €' — 2.

m We could fix a functor X: 4 — & and ask that there exists a
functor Lanp(X): € — Z such that this isomorphism is still
natural in Y, even if the left adjoint of F'* doesn't exist.



Kan extensions

m A functor F': € — 2 has a colimit if and only if Lang (F')
along K: € — 1 exists. The colimit is
colim(F') = (Lang (F))(x) where x is the sole object of 1.

m Similarly, lim(F') = (Rang (F))(x) when it exists.

m The existence of an adjoint can also be expressed in terms of
the existence of a particular Kan extension.



Kan extensions

Given a finite category €, a functor F: € — 2, and a finitely
complete category & we have that X ¢(F) 4 Ranp exists. If & is
finitely cocomplete then we have the analogous conclusion for
Lanp. Both adjoints exist for & = Fin.
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