Finite Generation of Families of Structures Equipped with Compatible Group Actions

Charlotte Aten

University of Colorado Boulder

2025 May 18

Introduction

- Background: FI-module theory
- Synergies and bimodules

- For some time there were known examples of phenomena called *representation stability* and *homological stability*.
- In both cases a naturally-constructed sequence of objects were known (either representations or spaces) and while their representations or homology groups continued to grow forever, their descriptions «stabilized» into a recognizable pattern.

For example, it had been known for some time that when $n \ge 2$ we have that

$$H^1(\mathsf{Conf}_n(\mathbb{C});\mathbb{C}) \cong \mathbb{C}^{\binom{n}{2}}.$$

■ Since each of these cohomology groups is a Σ_n -module, we can decompose $H^1(\mathsf{Conf}_n(\mathbb{C});\mathbb{C})$ as a sum of irreducible representations.

■ The significant observation here is that when $n \ge 4$ we have that

$$H^1(\mathsf{Conf}_n(\mathbb{C});\mathbb{C}) = V(0) \oplus V(1) \oplus V(2)$$

where the V(k) are representations induced from those corresponding to the partitions (0), (1), and (2).

- In 2013 Church and Farb proved that this stabilization in the names of the irreducible representations comprising $H^i(\mathsf{Conf}_n(\mathbb{C});\mathbb{C})$ as a Σ_n representation occurs for each i.
- Church, Ellenberg, and Farb continued to develop the relevant theory over the next few years, which is the theory of Fl-modules.

- An FI-module is a functor from the category FI of finite sets with injections as morphisms into a category Mod(R) of modules over a commutative unital ring R.
- In 2015 Church, Ellenberg, and Farb proved a Noetherianess result for Fl-modules.

- This led to the 2019 work of Ramos and White on Fl-graphs, which are functors from the category FI to the category Grph of graphs.
- They showed that for those FI-graphs G_{\bullet} they identified as *vertex-stable* the function

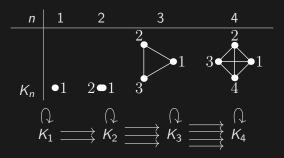
$$n \mapsto \dim_{\mathbb{R}}(H_i(\mathsf{HoCo}(T, G_n); \mathbb{R}))$$

where T is a fixed graph and $HoCo(T, G_n)$ is the Hom-complex of multi-homomorphisms of T into G_n eventually agrees with a polynomial of degree at most |V(T)| d(i+1) where d is the stable degree of the vertex-stable Fl-graph G_{\bullet} .

For any fixed r the Fl-graph $KG_{\bullet,r}$ is vertex-stable.

n	2	3	4	5
		13	14•—•23	
		•12	13•—•24	
$KG_{n,2}$	•12	23	12 •-• 34	

Any injection from $[m] := \{1, 2, ..., m\}$ to $[n] = \{1, 2, ..., n\}$ is a homomorphism from K_m to K_n .



Thesis results

- In my thesis I developed a more general theory which parallels that of FI-modules.
- Instead of a sequence of representations $\{\mathbf V_n\}_{n\in\mathbb N}$ of the symmetric groups $\{\Sigma_n\}_{n\in\mathbb N}$ indexed by the category FI of finite sets with inclusions as morphisms, we consider *synergies*, which are functors from an indexing (or shape) category **S** to the category of groups.
- Building on this, a triad of results about finite generation of corresponding bimodules are proven.

Definition (Synergy)

We refer to a functor $G: S \to Grp$ as a *synergy* of shape S or as an S-synergy.

■ For $s \in S$ we typically write \mathbf{G}_s rather than $\mathbf{G}(s)$ and given a morphism $f: s_1 \to s_2$ in \mathbf{S} we simply write \check{f} rather than $\mathbf{G}(f)$.

- Many familiar families of groups form synergies.
- The symmetric and alternating groups both form synergies indexed by the natural numbers **N**.
- The general linear groups $\mathbf{GL}_n(\mathbb{F})$ may be viewed as a synergy indexed by \mathbf{N}^2 by taking

$$(\mathsf{GL}(\mathbb{F}))_{i,j} \coloneqq \mathsf{GL}_{i+j}(\mathbb{F}).$$

Definition (Unspooling of a synergy)

Given an **S**-synergy **G** the *unspooling* of **G** is the category \mathcal{G} whose objects are the elements of S, whose morphism sets are

$$\mathsf{Hom}_{\mathcal{G}}(s_1,s_2) \coloneqq \{ \, \sigma \mathit{f}\tau \mid \sigma,\tau \in \mathit{G}_{s_2} \,\, \mathsf{and} \,\, \mathit{f} \ldotp s_1 o s_2 \, \} \, ,$$

whose composition map

$$\circ : \mathsf{Hom}_{\mathcal{G}}(s_2, s_3) \times \mathsf{Hom}_{\mathcal{G}}(s_1, s_2) \to \mathsf{Hom}_{\mathcal{G}}(s_1, s_3)$$

is given by

$$(\sigma_3 g \tau_3) \circ (\sigma_2 f \tau_2) = \sigma_3 \check{g}(\sigma_2) (g \circ f) \check{g}(\tau_2) \tau_3,$$

and whose identity morphisms are those of the form eve.

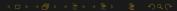
Definition (Synergy biobject)

Given a synergy **G** and a category $\mathscr C$ we refer to a functor $\mathbf V\colon \mathcal G\to \mathscr C$ as a **G**-biobject in $\mathscr C$.

Definition (Synergy bimodule category)

Given a commutative unital ring R and a synergy G we refer to G Mod(R) as the *category of G-bimodules (over R)*.

■ A symmetric synergy bimodule is an FI-module with a compatible action of the symmetric groups on the right.



Definition (Regular synergy bimodule)

Given an **S**-synergy **G**, a unital commutative ring **R**, and an **S**-set Ψ we define the *regular* **G**-bimodule

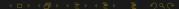
$$\textbf{RG}[\Psi] \mathpunct{:} \mathcal{G} \to \textbf{Mod}(\textbf{R})$$

by

$$(\mathsf{RG}[\Psi])_s \coloneqq \mathsf{R}[\{ \, \sigma \psi \mid \psi \in \Psi_s \text{ and } \sigma \in G_s \, \}]$$

and

$$\overline{\sigma_2 \mathit{f} \tau_2}(\sigma_1 \psi) \coloneqq \sigma_2 \check{\mathit{f}}(\sigma_1) \tau_2 \check{\mathit{f}}(\psi).$$



Definition (Finitely generated synergy bimodule)

We say that a $\hat{\mathbf{G}}$ -bimodule $\mathbf{V}: \mathcal{G} \to \mathbf{Mod}(\mathbf{R})$ is *finitely generated* when there exists an epimorphism $\mathbf{Fr}(\Psi) \twoheadrightarrow \mathbf{V}$ where Ψ is finite.

■ A finitely generated synergy bimodule is thus determined by elements lying in a certain collection of modules \mathbf{V}_s .

Definition (Augmentation ideal)

Given a **G**-bimodule $V: \mathcal{G} \to \mathbf{Mod}(\mathbf{R})$ the augmentation ideal $\Theta V: \mathcal{G} \to \mathbf{Mod}(\mathbf{R})$ is the sub-**G**-bimodule of V with $(\Theta V)_s$ defined to be the sub-**R**-module of V_s generated by

$$\{ v - \bar{\sigma}v\bar{\tau} \mid v \in V_s, \ \sigma, \tau \in G_s \}.$$

Definition (Escalation)

Given a category **S** and an endofunctor $\mathring{\xi} \colon \mathbf{S} \to \mathbf{S}$ we refer to a natural transformation $\xi \colon \mathrm{id}_{\mathbf{S}} \to \mathring{\xi}$ as an escalation of **S**.

- Escalations of a poset are isotone maps.
- Escalations of a group are inner automorphisms. (Compare with the work of Cohen et al.)
- The escalations of a category always form a monoid under horizontal composition.

Definition (Escalation ring)

Given a category S and a unital commutative ring R we denote by $R \operatorname{Esc}(S)$ the *escalation ring* (of S over R), which is the monoid ring of $\operatorname{Esc}(S)$ over R.

Definition (Ring of a set of escalations)

Given a category **S** and some $\Xi \subset Esc(S)$ we denote by $R\{\Xi\}$ the subring of R **Esc(S)** generated by $R \cup \Xi$.

Definition (Coinvariants module)

Let **G** be an **S**-synergy which has a generating set Ξ and let **R** be a unital commutative ring. Given a **G**-bimodule $V: \mathcal{G} \to \mathbf{Mod}(R)$ the Ξ -coinvariants module ΦV is an S-graded $R\{\Xi\}$ -module whose s^{th} component is

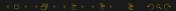
$$(\Phi V)_s := V_s/(\Theta V)_s$$

and for which $\xi \in \Xi$ acts as a map

$$\dot{\xi}_s$$
: $(\Phi \mathbf{V})_s
ightarrow (\Phi \mathbf{V})_{\mathring{\xi}(s)}$

which is given by

$$\dot{\xi}_s(v/(\Theta V)_s) \coloneqq \bar{\xi}_s(v)/(\Theta V)_{\mathring{\xi}(s)}.$$



Definition (Noetherian category)

Given a category **S** which is finitely generated by (Ξ, B) and a unital commutative ring **R** we say that **S** is (\mathbf{R}, Ξ) -Noetherian (or Noetherian (over **R** with respect to Ξ)) when $\mathbf{R}\{\Xi\}$ is a Noetherian ring.

Proposition (A. 2022)

If **G** is a synergy then for any finite **S**-set Ψ we have that $\mathbf{RG}[\Psi]$ is finitely generated. If **G** is NFG by (Ω, Ω', B) and Ψ is finite with finite generating set Ψ' whose associated base is B then $\Theta \mathbf{G}[\Psi]$ is finitely generated.

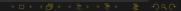
■ We get a relatively explicit bound on the size of a finite generating set for Θ **G**[Ψ] since we have that

$$\left|\Psi^{\Omega}\right| \leq \left|(\Psi')^{\Omega'}\right| \leq 2 \sum_{s \in \mathcal{B}} \left|\Psi' \cap \Psi_s\right| \left|\Omega' \cap \Omega_s\right|.$$

Theorem (A. 2022)

Suppose that **G** is an **S**-synergy and that $V: \mathcal{G} \to Mod(R)$ is a **G**-bimodule with $W \le V$. If

- ullet Θ **W** is finitely generated with witness q_{Θ} : $\mathbf{Fr}(\Psi_{\Theta}) \twoheadrightarrow \mathbf{V}$ where Ψ_{Θ} is finite with finite generating set Ψ'_{Θ} whose associated base is B_{Θ} ,
- $\mathbb{Q} \leq \mathbb{R}$,
- $\overline{\mathbf{3}}$ all the groups \mathbf{G}_s are torsion,
- **4 S** is (\mathbf{R}, Ξ) -Noetherian,
- **5 V** is finitely generated with witness $q: \mathbf{Fr}(\Psi) \rightarrow \mathbf{V}$ where Ψ is finite with finite generating set Ψ' whose associated base is B,
- **S** is generated by (Ξ, B) then **W** is finitely generated.



Theorem (A. 2022)

Sub- Σ -bimodules of $\mathbb{C}\Sigma[1]$ are finitely generated.

Thank you!