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Introduction

Background: FI-module theory
Synergies and bimodules
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Background: FI-module theory

For some time there were known examples of phenomena
called representation stability and homological stability.
In both cases a naturally-constructed sequence of objects were
known (either representations or spaces) and while their
representations or homology groups continued to grow forever,
their descriptions «stabilized» into a recognizable pattern.
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Background: FI-module theory

For example, it had been known for some time that when
n ≥ 2 we have that

H1(Confn(C);C) ∼= C(
n
2).

Since each of these cohomology groups is a Σn-module, we
can decompose H1(Confn(C);C) as a sum of irreducible
representations.
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Background: FI-module theory

The significant observation here is that when n ≥ 4 we have
that

H1(Confn(C);C) = V(0)⊕ V(1)⊕ V(2)

where the V(k) are representations induced from those
corresponding to the partitions (0), (1), and (2).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Background: FI-module theory

In 2013 Church and Farb proved that this stabilization in the
names of the irreducible representations comprising
Hi(Confn(C);C) as a Σn representation occurs for each i.
Church, Ellenberg, and Farb continued to develop the relevant
theory over the next few years, which is the the theory of
FI-modules.
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Background: FI-module theory

An FI-module is a functor from the category FI of finite sets
with injections as morphisms into a category Mod(R) of
modules over a commutative unital ring R.
In 2015 Church, Ellenberg, and Farb proved a Noetherianess
result for FI-modules.
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Background: FI-module theory

This led to the 2019 work of Ramos and White on FI-graphs,
which are functors from the category FI to the category Grph
of graphs.
They showed that for those FI-graphs G• they identified as
vertex-stable the function

n 7→ dimR(Hi(HoCo(T,Gn);R))

where T is a fixed graph and HoCo(T,Gn) is the Hom-complex
of multi-homomorphisms of T into Gn eventually agrees with
a polynomial of degree at most |V(T)| d(i + 1) where d is the
stable degree of the vertex-stable FI-graph G•.
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Background: FI-module theory

For any fixed r the FI-graph KG•,r is vertex-stable.

n 2 3 4 5

KGn,2 12

12

13

23 12 34

13 24

14 23
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Background: FI-module theory

Any injection from [m] := {1, 2, . . . ,m} to [n] = {1, 2, . . . , n} is a
homomorphism from Km to Kn.

n 1 2 3 4

Kn 1 12

1

2

3

1

2

3

4

K1 K2 K3 K4
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Thesis results

In my thesis I developed a more general theory which parallels
that of FI-modules.
Instead of a sequence of representations {Vn}n∈N of the
symmetric groups {Σn}n∈N indexed by the category FI of
finite sets with inclusions as morphisms, we consider synergies,
which are functors from an indexing (or shape) category S to
the category of groups.
Building on this, a triad of results about finite generation of
corresponding bimodules are proven.
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Synergies and bimodules

Definition (Synergy)
We refer to a functor G:S → Grp as a synergy of shape S or as an
S-synergy.

For s ∈ S we typically write Gs rather than G(s) and given a
morphism f: s1 → s2 in S we simply write f̆ rather than G(f).
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Synergies and bimodules

Many familiar families of groups form synergies.
The symmetric and alternating groups both form synergies
indexed by the natural numbers N.
The general linear groups GLn(F) may be viewed as a synergy
indexed by N2 by taking

(GL(F))i,j := GLi+j(F).
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Synergies and bimodules

Definition (Unspooling of a synergy)
Given an S-synergy G the unspooling of G is the category G whose
objects are the elements of S, whose morphism sets are

HomG(s1, s2) := {σfτ | σ, τ ∈ Gs2 and f: s1 → s2 } ,

whose composition map

◦: HomG(s2, s3)× HomG(s1, s2) → HomG(s1, s3)

is given by

(σ3gτ3) ◦ (σ2fτ2) = σ3ğ(σ2)(g ◦ f)ğ(τ2)τ3,

and whose identity morphisms are those of the form eιe.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Synergies and bimodules

Definition (Synergy biobject)
Given a synergy G and a category C we refer to a functor
V:G → C as a G-biobject in C .

Definition (Synergy bimodule category)
Given a commutative unital ring R and a synergy G we refer to
G Mod(R) as the category of G-bimodules (over R).

A symmetric synergy bimodule is an FI-module with a
compatible action of the symmetric groups on the right.
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Synergies and bimodules

Definition (Regular synergy bimodule)
Given an S-synergy G, a unital commutative ring R, and an S-set
Ψ we define the regular G-bimodule

RG[Ψ]:G → Mod(R)

by
(RG[Ψ])s := R[{σψ | ψ ∈ Ψs and σ ∈ Gs }]

and
σ2fτ2(σ1ψ) := σ2f̆(σ1)τ2f̆(ψ).
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Synergies and bimodules

Definition (Finitely generated synergy bimodule)
We say that a G-bimodule V:G → Mod(R) is finitely generated
when there exists an epimorphism Fr(Ψ) ↠ V where Ψ is finite.

A finitely generated synergy bimodule is thus determined by
elements lying in a certain collection of modules Vs.
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Synergies and bimodules

Definition (Augmentation ideal)
Given a G-bimodule V:G → Mod(R) the augmentation ideal
ΘV:G → Mod(R) is the sub-G-bimodule of V with (ΘV)s defined
to be the sub-R-module of Vs generated by

{ v − σ̄vτ̄ | v ∈ Vs, σ, τ ∈ Gs } .
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Synergies and bimodules

Definition (Escalation)
Given a category S and an endofunctor ξ̊:S → S we refer to a
natural transformation ξ: idS → ξ̊ as an escalation of S.

Escalations of a poset are isotone maps.
Escalations of a group are inner automorphisms. (Compare
with the work of Cohen et al.)
The escalations of a category always form a monoid under
horizontal composition.
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Synergies and bimodules

Definition (Escalation ring)
Given a category S and a unital commutative ring R we denote by
R Esc(S) the escalation ring (of S over R), which is the monoid
ring of Esc(S) over R.

Definition (Ring of a set of escalations)
Given a category S and some Ξ ⊂ Esc(S) we denote by R{Ξ} the
subring of R Esc(S) generated by R ∪ Ξ.
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Synergies and bimodules

Definition (Coinvariants module)
Let G be an S-synergy which has a generating set Ξ and let R be a
unital commutative ring. Given a G-bimodule V:G → Mod(R) the
Ξ-coinvariants module ΦV is an S-graded R{Ξ}-module whose sth

component is
(ΦV)s := Vs/(ΘV)s

and for which ξ ∈ Ξ acts as a map

ξ̇s: (ΦV)s → (ΦV)ξ̊(s)

which is given by

ξ̇s(v/(ΘV)s) := ξ̄s(v)/(ΘV)ξ̊(s).
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Synergies and bimodules

Definition (Noetherian category)
Given a category S which is finitely generated by (Ξ,B) and a
unital commutative ring R we say that S is (R,Ξ)-Noetherian (or
Noetherian (over R with respect to Ξ)) when R{Ξ} is a
Noetherian ring.
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Synergies and bimodules

Proposition (A. 2022)
If G is a synergy then for any finite S-set Ψ we have that RG[Ψ] is
finitely generated. If G is NFG by (Ω,Ω′,B) and Ψ is finite with
finite generating set Ψ′ whose associated base is B then ΘG[Ψ] is
finitely generated.

We get a relatively explicit bound on the size of a finite
generating set for ΘG[Ψ] since we have that∣∣∣ΨΩ

∣∣∣ ≤ ∣∣∣(Ψ′)Ω
′
∣∣∣ ≤ 2

∑
s∈B

∣∣Ψ′ ∩Ψs
∣∣ ∣∣Ω′ ∩ Ωs

∣∣ .
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Synergies and bimodules

Theorem (A. 2022)
Suppose that G is an S-synergy and that V:G → Mod(R) is a
G-bimodule with W ≤ V. If

1 ΘW is finitely generated with witness qΘ:Fr(ΨΘ) ↠ V where
ΨΘ is finite with finite generating set Ψ′

Θ whose associated
base is BΘ,

2 Q ≤ R,
3 all the groups Gs are torsion,
4 S is (R,Ξ)-Noetherian,
5 V is finitely generated with witness q:Fr(Ψ) ↠ V where Ψ is

finite with finite generating set Ψ′ whose associated base is B,
6 S is generated by (Ξ,B)

then W is finitely generated.
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Synergies and bimodules

Theorem (A. 2022)
Sub-Σ-bimodules of CΣ[1] are finitely generated.
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Thank you!


