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Introduction

m Background: Fl-module theory

m Synergies and bimodules



Background: Fl-module theory

m For some time there were known examples of phenomena
called representation stability and homological stability.

m In both cases a naturally-constructed sequence of objects were
known (either representations or spaces) and while their
representations or homology groups continued to grow forever,
their descriptions «stabilized» into a recognizable pattern.



Background: Fl-module theory

m For example, it had been known for some time that when
n > 2 we have that

H*(Conf,(C); C) = c(2).

m Since each of these cohomology groups is a > ,-module, we
can decompose H*(Conf,(C); C) as a sum of irreducible
representations.



Background: Fl-module theory

m The significant observation here is that when n > 4 we have
that
H(Conf,(C); C) = V(0) ® V(1) & V(2)

where the V(k) are representations induced from those
corresponding to the partitions (0), (1), and (2).



Background: Fl-module theory

m In 2013 Church and Farb proved that this stabilization in the
names of the irreducible representations comprising
H(Conf,(C); C) as a ¥, representation occurs for each i.

m Church, Ellenberg, and Farb continued to develop the relevant
theory over the next few years, which is the the theory of
Fl-modules.



Background: Fl-module theory

m An Fl-module is a functor from the category Fl of finite sets
with injections as morphisms into a category Mod(R) of
modules over a commutative unital ring R.

m In 2015 Church, Ellenberg, and Farb proved a Noetherianess
result for FI-modules.



Background: Fl-module theory

m This led to the 2019 work of Ramos and White on Fl-graphs,
which are functors from the category Fl to the category Grph
of graphs.

m They showed that for those Fl-graphs G, they identified as
vertex-stable the function

n +— dimg(Hi(HoCo(T, G,); R))

where T is a fixed graph and HoCo( T, G,) is the Hom-complex
of multi-homomorphisms of T into G, eventually agrees with
a polynomial of degree at most |V(T)| d(i+ 1) where d is the
stable degree of the vertex-stable Fl-graph G,.



Background: Fl-module theory

For any fixed r the Fl-graph KG, , is vertex-stable.
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Background: Fl-module theory

Any injection from [m] :={1,2,..., m} to [n] ={1,2,
homomorphism from K, to K.
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Thesis results

m In my thesis | developed a more general theory which parallels
that of Fl-modules.

m Instead of a sequence of representations {V}, .y of the
symmetric groups {¥,} .y indexed by the category Fl of
finite sets with inclusions as morphisms, we consider synergies,
which are functors from an indexing (or shape) category S to
the category of groups.

m Building on this, a triad of results about finite generation of
corresponding bimodules are proven.



Synergies and bimodules

We refer to a functor G: S — Grp as a synergy of shape S or as an
S-synergy.

m For s € S we typically write G rather than G(s) and given a
morphism f.s; — s in S we simply write f rather than G(f).




Synergies and bimodules

m Many familiar families of groups form synergies.

m The symmetric and alternating groups both form synergies
indexed by the natural numbers N.

m The general linear groups GL,(IF) may be viewed as a synergy
indexed by N? by taking

(GL(F))ij = GLiyj(F).



Synergies and bimodules

Given an S-synergy G the unspooling of G is the category G whose
objects are the elements of S, whose morphism sets are

Homg(s1,s2) = {ofr |o,7 € Gs, and .51 — sp },

whose composition map

o: Homg(sy, s3) X Homg(s1, s2) — Homg(s1, s3)
is given by

(038T73) © (02fr2) = 038(02)(g © NE(T2) 73,
and whose identity morphisms are those of the form eve.
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Synergies and bimodules

Given a synergy G and a category % we refer to a functor
V:G — € as a G-biobject in €.
Given a commutative unital ring R and a synergy G we refer to

G Mod(R) as the category of G-bimodules (over R).

m A symmetric synergy bimodule is an Fl-module with a

compatible action of the symmetric groups on the right.



Synergies and bimodules

Given an S-synergy G, a unital commutative ring R, and an S-set
W we define the regular G-bimodule

by

RG[V]: G — Mod(R)

and

(RG[V])s =R[{oy | € Usand 0 € Gs}]

oafra(019)) == o2 f(a1) T (1))



Synergies and bimodules

We say that a G-bimodule V: G — Mod(R) is finitely generated

when there exists an epimorphism Fr(W) — V where W is finite

m A finitely generated synergy bimodule is thus determined by
elements lying in a certain collection of modules V.



Synergies and bimodules

Given a G-bimodule V: G — Mod(R) the augmentation ideal

©V:G — Mod(R) is the sub-G-bimodule of V with (©V) defined
to be the sub-R-module of V, generated by

{v—0ovi|ve V, o,7€Gs}.



Synergies and bimodules

Given a category S and an endofunctor £&:S — S we refer to a
natural transformation &:idg — & as an escalation of S.

m Escalations of a poset are isotone maps.

m Escalations of a group are inner automorphisms. (Compare
with the work of Cohen et al.)

m The escalations of a category always form a monoid under
horizontal composition.




Synergies and bimodules

Given a category S and a unital commutative ring R we denote by
ring of Esc(S) over R.

R Esc(S) the escalation ring (of S over R), which is the monoid

Given a category S and some = C Esc(S) we denote by R{=} the
subring of R Esc(S) generated by RU =.




Synergies and bimodules

Let G be an S-synergy which has a generating set = and let R be a

unital commutative ring. Given a G-bimodule V:G — Mod(R) the
=-coinvariants module ®V is an S-graded R{=}-module whose
component is

oth
(PV)s = V,/(OV)s
and for which £ € = acts as a map
£ (V)5 — (V)¢
which is given by

E(v/(OV)s) = &(v)/(@V)g -




Synergies and bimodules

Given a category S which is finitely generated by (=, B) and a
unital commutative ring R we say that S is (R, =)-Noetherian (or

Noetherian (over R with respect to =)) when R{=} is a
Noetherian ring.




Synergies and bimodules

If G is a synergy then for any finite S-set W we have that RG[V] is
finitely generated. If G is NFG by (2,2, B) and V is finite with

finite generating set W' whose associated base is B then ©G[V] is
finitely generated.

m We get a relatively explicit bound on the size of a finite
generating set for ©G[V] since we have that

W < || <23 [wnw | ne.
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Synergies and bimodules

Theorem (A. 2022)
Suppose that G is an S-synergy and that V: G — Mod(R) is a
G-bimodule with W < V. If

B ©W s finitely generated with witness qo: Fr(Wg) — V where
Vg is finite with finite generating set Wiy whose associated
base is Bg,

B Q<R

B al/l the groups G are torsion,

B S is (R, =)-Noetherian,

B V is finitely generated with witness q: Fr(W) — V where V is
finite with finite generating set W' whose associated base is B,

B S is generated by (=, B)
then W s finitely generated.



Synergies and bimodules

Sub-¥-bimodules of CX[1] are finitely generated.
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Thank you!



