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Multiply-valued operations

Given sets A and B, a bosk f : A <− B from A to B is a
function f⋆ : A → P(B).
Each bosk f : A <− B has a corresponding relation f⋆ ⊂ A × B
given by

f⋆ = { (a, b) ∈ A × B | b ∈ f⋆(a) } .



Multiply-valued operations

Given a set A and some n ∈ N, we say that a bosk f : An <− A
is a propagation of the set A.
Propagations include operations, hyperoperations, and partial
operations as special cases.



Multiply-valued operations

Given bosks f : A <− B and g : B <− C, we have a composite
bosk g ◦ f : A <− C given by

(g ◦ f)⋆(a) =
⋃

b∈f⋆(a)
g⋆(b).

This is equivalent to defining g ◦ f : A <− C by

(g ◦ f)⋆ = f⋆ ◦ g⋆.



Multiply-valued operations

Given a propagation f : Am <− A and m propagations
g1, . . . , gm : An <− A, we define the generalized composite

f[g1, . . . , gm] : An <− A

by

(f[g1, . . . , gm])⋆(a1, . . . , an) =⋃{
f⋆(b1, . . . , bm)

∣∣∣∣∣ (b1, . . . , bm) ∈
m∏

i=1
(gi)⋆(a1, . . . , an)

}
.



Multiply-valued operations

An almuqaba is like an algebra but with propagations instead
of operations.
A bale is an almuqaba (A, ∗,−1, e) of signature (2, 1, 0) such
that

1 (associativity) x(yz) = (xy)z for all x, y, z ∈ A,
2 (identity) xe = ex ⊂ x for all x ∈ A, and
3 (inverses) xx−1 = x−1x ⊂ e for all x ∈ A.

Bales include semigroups, monoids, groups, and categories as
special cases.



Wealds

A weald is an almuqaba (R,+, ∗,−,−1, 0, 1) such that
1 (R,+,−, 0) is a commutative bale,
2 (R, ∗,−1, 1) is a bale,
3 x(y + z) = xy + xz for all x, y, z ∈ R, and
4 (x + y)z = xz + yz for all x, y, z ∈ R.

If a weald is an algebra, then it is the trivial ring.
However, rings, fields, division rings, rigs, etc. may be viewed
as wealds by allowing some basic propagations which are not
operations on R.



Wealds

The weald F1 is the singleton set {1} where 1 + 1 = ∅,
1 ∗ 1 = 1, −1 = ∅, 1−1 = 1, 0() = ∅, and 1() = 1.
Given a group (G, ∗,−1, 1), we can define a weald
(G,+, ∗,−,−1, 0, 1) by setting x + y = −x = 0() = ∅ for all
x, y ∈ G.
We might identify the “field extension” F1n with the cyclic
group Z/nZ viewed as a weald.



Modules over wealds

Definition (Module over a weald)
Given a weald R = (R,+, ∗,−,−1, 0, 1), we say that an almuqaba
(M,+,−, 0,R) is a module over R (or an R-module) when

1 (M,+,−, 0) is a commutative bale,
2 for each r ∈ R we have a unary propagation r : M <− M,
3 r(x + y) = rx + ry for all r ∈ R and all x, y ∈ M,
4 (r + s)x = rx + sx for all r, s ∈ R and all x ∈ M,
5 r(sx) = (rs)x for all r, s ∈ R and all x ∈ M, and
6 1x ⊂ x for all x ∈ M.



Modules over wealds

In the case where R is a ring and (M,+,−, 0) is an Abelian
group, we recover the usual definition of a module over a ring.



Modules over wealds

Let M be a set. Define x + y = −x = 0() = ∅ for x, y ∈ M.
That is, let (M,+,−, 0) be a commutative bale whose
operations are all empty.
We can endow (M,+,−, 0) with the structure of an
F1-module by setting 1x = x for all x ∈ M.



Modules over wealds

Viewing sets as F1-modules in this way, we can view both the
usual binomial coefficients and their q-analogues for finite
fields Fq as special cases of the same construction.
We also have other basic combinatorial properties, like the
Vandermonde identity.



Modules over wealds

Definition (Disjoint union of modules)
Given a weald R and R-modules M = (M,+,−, 0) and N = (N,+,−, 0),
the disjoint union of M and N is the R-module

M ⊞ N = (M ⊎ N,+,−, 0)

where
xM + yM = (x + y)M,

xN + yN = (x + y)N,

xM + yN = ∅,

−(xM) = (−x)M and − (xN) = (−x)N,

0() = 0M() ⊎ 0N(),

and
rxM = (rx)M and rxN = (rx)N.



Modules over wealds

Given a module M, let

GLn(M) = Aut(Mn)

and let

CLn(M) = Aut(nM) = Aut(M ⊞ · · ·⊞ M).

We have that GLn(F1) is trivial, but CLn(F1) = Sn.
We also have CLn(F) = F× ≀ Sn, so CLn(F3) = Cn is the
hyperoctahedral group.



Modules over wealds

Sn ∼= CLn(F1) CLn(F) CLn(K)

S1 ∼= GLn(F1) GLn(F) GLn(K)

α

β

CLn(σ)

ηF ηK

γ GLn(σ)



Equational logic

Our almuqabas certainly aren’t algebras in the usual sense of
universal algebra.
In universal algebra, the identity xx ≈ x implies (xy)(xy) ≈ xy,
but this does not hold for all binary propagations.
While terms and identities look the same for algebras and
almuqabas, the inference rules are different.



Equational logic

In a category with finite products, we can view a morphism
An → A as an n-ary operation on A.
The idea of categorical universal algebra is to view an
algebraic theory as a category T whose objects are natural
numbers.
A morphism m → n represents an n-tuple of m-ary operations.
A (classical) model of T is a (finite-product-preserving)
functor from T to Set.



Equational logic

Almuqabas aren’t models of an algebraic theory T in Set.
They also aren’t models of an algebraic theory T in Rel.
This is because the product in Rel is the disjoint union.
In Rel, the Cartesian product is just some monoidal product.



Equational logic

Models algebras algebras for an operad
Multicategory clone operad

Category Lawvere theory PRO
Bifunctor product monoidal product
Identities all strongly regular

Inference rules application, substitution application



Equational logic

Almuqabas aren’t models of an algebraic theory T in Set.
They also aren’t models of an algebraic theory T in Rel.
This is because the product in Rel is the disjoint union.
In Rel, the Cartesian product is just some monoidal product a
monoidal product with projections and pairing.
That is, the Cartesian product is a product except without the
uniqueness part of the universal property.



Equational logic

Models algebras almuqabas algebras for an operad
Multicategory clone lush operad operad

Category Lawvere theory lush PRO PRO
Bifunctor product lush monoidal product monoidal product
Identities all all strongly regular

Inference rules application, substitution application, variable identification application



Thank you!


