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Example: Graphs
Example: Associativity
Background story: Bourbaki’s structures
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Example: Graphs

Fix a universe
A := {a1, . . . , an} .

For each pair {ai, aj} ∈
(A

2
)
, we have a variable xij.

Given a graph G = (A, f ⊂
(A

2
)
), we can evaluate xij on G by

xij(G) =

{
1 when {ai, aj} ∈ f
0 otherwise

.
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Example: Graphs

That is, xij acts as the indicator function of the pair {ai, aj}.
We can form monomials, such as

y = x12x23x31.

The natural notion of action inherited from the xij gives us

y(G) =

{
1 when {a1, a2, a3} is a clique in G
0 otherwise

.
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Example: Graphs

This property is not invariant under permutations of the
names of our vertices.
A more well-behaved property is that of having a triangle.
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Example: Graphs

This corresponds to the polynomial

p =
∑

{ai,aj,ak}∈(A
3)

xijxjkxki.

This time we have

p(G) = # of triangles in G.
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Example: Graphs

I claim that every property of finite structures can be
computed by evaluating at such polynomials.
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Example: Associativity

Fix a universe
A := {a1, . . . , an} .

For each triple (ai, aj, ak) ∈ A3, we have a variable xijk.
Given a ternary relational structure A = (A, f ⊂ A3), we can
evaluate xijj on A by

xijk(A) =

{
1 when (ai, aj, ak) ∈ f
0 otherwise

.
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Example: Associativity

If A = (A, f) is a magma in the sense that f is the graph of a
binary operation A2 → A with (ai, aj, ak) ∈ f meaning that
f(ai, aj) = ak, then we can express associativity in terms of
polynomials in the xijk.
We have that

f(f(ai, aj), ak) = aℓ = f(ai, f(aj, ak))

when there is exactly one witness to both

(∃as)((ai, aj, as) ∈ f ∧ (as, ak, aℓ) ∈ f)

and
(∃as)((ai, as, aℓ) ∈ f ∧ (aj, ak, as) ∈ f).
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Example: Associativity

These terms correspond to
n∑

s=1
xijsxskℓ

and n∑
s=1

xisℓxjks,

respectively.
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Example: Associativity

This means that associativity corresponds to having

n∑
i,j,k,ℓ=1

( n∑
s=1

(xijsxskℓ − xisℓxjks)

)2

(A) = 0.
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Example: Associativity

We can decompose this polynomial as

∑
i=j=k=ℓ

( n∑
s=1

(xijsxskℓ − xisℓxjks)

)2

+

∑
i=j=k ̸=ℓ

( n∑
s=1

(xijsxskℓ − xisℓxjks)

)2

+

∑
i=j=ℓ̸=k

( n∑
s=1

(xijsxskℓ − xisℓxjks)

)2

+

· · ·
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Example: Associativity

The first term

∑
i=j=k=ℓ

( n∑
s=1

(xijsxskℓ − xisℓxjks)

)2

=
n∑

i=1

( n∑
s=1

(xiisxsii − xisixiis)

)2

is counting the number of times that ai(aiai) = ai(aiai) = ai
fails to occur.
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Background story: Bourbaki’s structures

In writing the textbook series les Éléments de mathématique,
Bourbaki had sought to lay out in the first text of the series,
Theory of Sets a systematic description of mathematical
structures as they would appear throughout the rest of the
series.
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Background story: Bourbaki’s structures

Basically, they said that a structure was a set, say A, equipped
with an indexed family {fi}i∈I of relations fi where each fi was
a subset of a set which could be constructed from A by taking
Cartesian products and powersets finitely many times.
For example, a relation on A might be a subset of

A × Sb(Sb(A)× A57)× Sb(Sb(Sb(A))).
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Background story: Bourbaki’s structures

Bourbaki defined what we would now call morphisms of these
structures and proved several results about them, all of which
we would now consider to belong to category theory.
Once Eilenberg and Mac Lane had established category theory
Grothendieck and then Cartier were asked to produce a
category theory component for the Éléments, although if
either did their contribution never made it into the texts.
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Background story: Bourbaki’s structures

Discussions in «La Tribu» during the 1950s seem to indicate
that Bourbaki felt much of the Éléments would have to be
rewritten in order to accommodate the new notions from
category theory.
It appeared to be difficult to synthesize the structural and
categorical viewpoints together, so the consensus became that
this task was not worth the effort.
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Thesis results

In my thesis I presented one possible categorification of
Bourbaki’s concept of structure.
The main result in this case is a generalization of a result of
Hilbert on symmetric polynomials to the setting of finite
structures.
This generalization has the perhaps surprising implication that
any first-order property of a finite structure A can be checked
by counting the number of small substructures B ↪→ A, where
«small» is a function of the logical complexity of the
first-order property.
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Thesis results

As Bourbaki imagined, the setup for this is a little involved
and is relegated to an appendix.
That appendix also contains a Yoneda-style embedding
theorem which shows that categories of structures built from
a set A may always be viewed as having basic relations of the
form An as in model theory.
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Structures

Given an index category I and categories C and D we refer
to a functor ρ:I → Fun(C ,D) as a presignature.
In our examples before, I was the trivial category with one
object and C = D = Set.
For graphs ρ(?) is the functor A 7→

(A
2
)
.

For ternary relational structures (like magmas) ρ(?) is the
functor A 7→ A3.
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Structures

To each presignature we associate an extractor

ρ :C → Fun(I ,D).

The extraction of ρ at an object A of C is a functor

ρA:I → D .

A signature is a presignature which supports taking images in
a certain sense.
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Structures

Definition (Signature)
Given a presignature ρ:I → Fun(C ,D) we say that ρ is a
(C ,D)-signature on the index category I when given any
monomorphism F:U ↪→ ρA in Fun(I ,D) and any morphism
h:A → B in C we have that Im(ρh ◦ F) exists in Fun(I ,D).

If D has all images and I is discrete then any presignature as
above is a signature.
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Structures

Definition (Structure)
Given a (C ,D)-signature ρ on an index category I and
A ∈ Ob(C ) we refer to a subobject A of ρA in the category
Fun(I ,D) as a (C ,D)-structure of signature ρ on A (or as a
ρ-structure when we want to emphasize the signature).
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Structures

Given a structure A on an object A of signature
ρ:I → Fun(C ,D) and N ∈ Ob(I ) we refer to the class of
morphisms

AN := {FN | F ∈ A }

in D as the relation of A at N.
Morphisms of I similarly give us relators between relations.
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Structures

Let A be a structure on an object A of signature ρ and let B
be a structure on an object B of signature ρ.
We say that a morphism h:A → B is a morphism from A to B
when h(A) ≤ B as subobjects of ρB.
There is a category Structρ of structures with a given
signature.
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Structures

Definition (Finite signature)
We say that a signature ρ:I → Fun(Set,Set) is finite when I
has finitely many objects and finitely many morphisms and for each
N ∈ Ob(I ) and each finite set A we have that ρA(N) is finite.

Definition (Finite structure)
We say that a structure of finite signature ρ on a finite set is a
finite structure.
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Isomorphism invariant polynomials

We denote by StructρA the collection of all structures of the
same signature on the set A, which we call a kinship class.
The class Structρ of all structures with signature ρ is likewise
called a similarity class.
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Isomorphism invariant polynomials

Definition (Substructure)
Given a structure A of signature ρ we refer to a subobject of A in
Structρ as a substructure of A.
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Isomorphism invariant polynomials

Given a set of variables X the symmetric group ΣX of
permutations of X acts on the corresponding polynomial
algebra R[X] for some unital commutative ring R.
The polynomials invariant under this action are the symmetric
polynomials, which themselves form an R-algebra.
A classical result of Hilbert is that certain very simple
elementary symmetric polynomials generate this algebra of all
symmetric polynomials.
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Isomorphism invariant polynomials

Definition (Variables XρA)

Given a finite signature ρ on an index category I and a finite set
A we define

XρA :=
⋃

N∈Ob(I )

{ xN,a | a ∈ ρA(N) } .
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Isomorphism invariant polynomials

Definition (Monomial yA)
Given a finite signature ρ on an index category I , a finite set A,
and a structure A := (A,F) ∈ StructρA we define

yA :=
∏

N∈Ob(I )

∏
a∈F(N)

xN,a.
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Isomorphism invariant polynomials

Definition ((ρ,A) polynomial algebra)
Given a commutative ring R, a finite signature ρ, and a finite set A
we define the (ρ,A) polynomial algebra over R to be the
subalgebra of R[XρA] which is generated by YρA. We denote this
algebra by PolρA(R).
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Isomorphism invariant polynomials

Definition (Action υ)
We define a group action υ: ΣA → Aut(R[XρA]) by setting
(υ(σ))(xN,a) := xN,(ρσ(N))(a) and extending.

Definition (Symmetric polynomial)
A polynomial p ∈ PolρA(R) is called symmetric when for every
σ ∈ ΣA we have that (υ(σ))(p) = p.
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Isomorphism invariant polynomials

Definition (Action ζ)
We define a group action ζ: ΣA → ΣStructρA

by

(ζ(σ))(A,F) := (A, ρσ ◦ F).
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Isomorphism invariant polynomials

Definition (Isomorphism classes of structures)
We define

IsoStrρA :=
{
Orbζ(A)

∣∣ A ∈ StructρA
}
.

Definition (Elementary symmetric polynomial)
Given a finite signature ρ, a finite set A, and an isomorphism class
ψ ∈ IsoStrρA we define the elementary symmetric polynomial of ψ
to be

sψ :=
∑
A∈ψ

yA.

The elementary symmetric polynomials are symmetric
polynomials.
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Isomorphism invariant polynomials

Theorem (A. 2022)
Given a polynomial f ∈ SymPolρA(R) of degree d there exists a
polynomial g ∈ R[ZρA] of weight at most d such that f = g|Zρ

A=Sρ
A
.
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Isomorphism invariant polynomials

The proof is inductive and follows a proof of Hilbert’s result.
We first show that monomials factor as

k∏
i=1

yAi = y∨k
i=1 Ai

µ

where µ ∈ PolρA.
We then induct on the size of the universe A.
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Isomorphism invariant polynomials

Supposing we have the result for a universe
B = {a1, . . . , an−1} and we want to show it for
A = {a1, . . . , an} we define

An :=
⋃

N∈Ob(I )

{ xN,a | a ∈ ρA(N) \ Im(ρι(N)) }

to be the collection of variables in XρA depending on an.
Since

f|An=0∈ SymPolρB(R)

there exists some g1 ∈ R[ZρB] of weight at most d such that
f|An=0= g1|Zρ

B=Sρ
B
.
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Isomorphism invariant polynomials

We conclude by arguing that replacing the monomials
appearing in this g1 with the corresponding monomials over A
yields a new polynomial, which we abusively also call g1, such
that

f = (g1 + g2)|Zρ
A=Sρ

A

where the additional term g2 is also a symmetric polynomial.
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