
NONNORMAL QUOTIENTS

CHARLOTTE ATEN

Abstract. We present a natural extension of the process of taking a group

quotient to arbitrary subgroups. We first review basic concepts from group

theory. This will allow us to see the relationship between our new, more
general quotient operation and the standard group quotient. In particular,

we will find that a naive attempt to perform the quotient process with a

nonnormal subgroup actually leads to a well-defined operation which can be
easily characterized with existing terminology.
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1. Groups

We recall the relevant terminology from group theory[1, 2]. A group consists of
an underlying set G and an operation f : G2 → G such that the following conditions
hold:

Associativity for every x, y, z ∈ G we have that f(f(x, y), z) = f(x, f(y, z)),
Identity there exists e ∈ G such that f(x, e) = f(e, x) = x for every x ∈ G, and
Inverses for every x ∈ G there exists some x−1 ∈ G such that

f(x, x−1) = f(x−1, x) = e.

We often write xy to indicate f(x, y) when the group in question is understood.
Infix notation, such as x ∗ y, is also sometimes used. We will refer to both the set
G and the group consisting of G under f as simply G when the context is clear.

Given a group G we may have that some H ⊂ G also forms a group under the
same operation as G. In this case we say that H is a subgroup of G and write
H ≤ G. If H ≤ G and a ∈ G we refer to aH := {ah|h ∈ H} as the left coset of H
containing a. This terminology is justified, for the left cosets of H in G partition
G. We can similarly define the right coset of H containing a as Ha := {ha|h ∈ H}.
The right cosets of H in G also partition G.
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If a left coset H ′ of H ≤ G can be written as H ′ = aH for a ∈ G, we say that a
is a representative of H ′. Any element of H ′ can serve as a representative, and we
have that a, b ∈ G are both representatives of H ′ if and only if b−1a ∈ H. (To see
this, set aH = bH and note that b−1ae = b−1a must belong to b−1aH = H.)

In general it is not the case that aH = Ha for a given H ≤ G and a ∈ G.
Moreover, the collection of left cosets of H in G and the collection of all right cosets
of H in G are distinct from each other in general. If we do have that aH = Ha for
all a ∈ G, we say that the subgroup H is normal in G and write H E G.

If H E G then the (left) cosets of H from a group under elementwise multipli-
cation. The identity of this group is the coset eH = H. We refer to such a group
as the quotient group of G by H, which we indicate by G/H.

If H 6E G (that is, H is not normal in G or H is nonnormal in G) then the left
cosets of H do not form a group. The set of such cosets is not even closed under
multiplication. We now generalize the construction of a quotient group to taking a
quotient by an arbitrary subgroup.

2. Definitions

In the following definitions let G be a group and let H be any subgroup of G.
In particular, H need not be normal in G. We would like the product of two left
cosets of H in G to again be a left coset. Unfortunately this is not always the case,
so we provide terminology for those subsets of G which are products of cosets of H.

Definition 1 (Block induced by H). Let C1 = aH and C2 = bH be left cosets of
H ≤ G. A left block B induced by H in G is a set of the form

B := C1C2 = {ah1bh2|h1, h2 ∈ H}
where a and b are representatives of C1 and C2, respectively. Right blocks are
defined analogously.

From now on we will only make use of left blocks and the related left-handed
objects. We define representatives for blocks in analogy with those for cosets. That
is, we say that a, b is a representative pair for the block B if B = aHbH. The left
blocks of H in G naturally induce a well-defined relation on the left cosets of H in
G as well as a relation on the elements of G itself.

Definition 2 (Relation θ). Define a relation θ on the left cosets of H in G by
aHθbH for a, b ∈ G if there exist m1, n1,m2, n2 ∈ G such that m1n1 = a, m2n2 = b,
m1H = m2H, and n1H = n2H. That is, we say aHθbH when there exists a block
B such that a, b ∈ B.

Lemma 1. The relation θ is well-defined.

Proof. Suppose aH = cH and bH = dH. We show that aHθbH if and only if
cHθdH.

Assume aHθbH. Then there exist m1, n1,m2, n2 ∈ G such that m1n1 = a,
m2n2 = b, m1H = m2H, and n1H = n2H. Note that c = m1(m−11 c) and d =
m2(m−12 d). We already have that m1H = m2H, so if we can show that m−11 cH =
m−12 dH we will have shown that cHθdH, as desired. This is indeed the case, as

m−11 cH = m−11 aH = m−11 m1n1H = n1H = n2H = m−12 m2n2H = m−12 bH = m−12 dH.

By symmetry the converse holds, as well. �
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Definition 3 (Relation ψ). Define a relation ψ on the elements of G by aψb for
a, b ∈ G if there exist x1, y1, x2, y2 ∈ G such that x1y1 = a, x2y2 = b, x1H = x2H,
and y1H = y2H. That is, we say aψb when there exists a block B such that
a, b ∈ B.

Lemma 2. For any a, b ∈ G we have that the following are equivalent:

1. there exists a block B such that aH, bH ⊂ B
2. aHθbH
3. aψb

Proof. It follows immediately from the definitions of θ and ψ that we have aψb if
and only if aHθbH. It is also immediate that if there exists a block B such that
aH, bH ⊂ B then a, b ∈ B and hence aψb and aHθbH. Now suppose instead that
there exists a block C such that a, b ∈ C. We show this implies that aH, bH ⊂ B
for some block B.

Let C = c1Hc2H. Then

aH ⊂ c1Hc2HH = c1Hc2H = C

and
bH ⊂ c1Hc2HH = c1Hc2H = C,

so we can just take B = C. �

The relation ψ (and hence the relation θ) is symmetric and reflexive but not
transitive. For example, if we take G to be the symmetric group on {0, 1, 2, 3} and
take H to be the subgroup generated by the transposition (3, 4) then one can verify
that ()ψ(1, 2) and (1, 2)ψ(1, 2, 3, 4), but it is not the case that ()ψ(1, 2, 3, 4) as there
is no block which contains both () and (1, 2, 3, 4).

3. Main Result

We again let G be a group with a subgroup H. We denote the normal closure of
H by Nc(H) and denote the identity in G by e. We now take the transitive closure
of the relation ψ on the elements of G. Let S0 = H and for any n ∈ N let

Sn = {g ∈ G|gψs for some s ∈ Sn−1}.
Also let S =

⋃
n∈N Sn.

Definition 4. Define a relation ∼ on G as follows. Given g1, g2 ∈ G we say that
g1 ∼ g2 when there exists some a ∈ G such that g1, g2 ∈ aS.

Theorem 1. The relation ∼ is precisely the relation induced by the left cosets of
Nc(H) in G. Moreover, S = Nc(H).

Proof. We will show that S = Nc(H), so that our definition of ∼ is well-defined.
Recall that Nc(H) = 〈ghg−1|g ∈ G, h ∈ H〉. We begin by showing that

S1 := {g ∈ G|gψh for some h ∈ H} ⊂ 〈ghg−1|g ∈ G, h ∈ H〉 = Nc(H).

Suppose that gψh. Then g, h ∈ aHbH for some a, b ∈ G, so g = ah1bh2 and
h = ah3bh4 for some h1, h2, h3, h4 ∈ H. It follows that

b = h−13 a−1hh−14 = h−13 a−1h5

for some h5 ∈ H. Then

g = ah1(h−13 a−1h5)h2 = a(h1h
−1
3 )a−1eh2e

−1 = (ah6a
−1)(eh2e

−1)
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where h6 ∈ H. Since a, e ∈ G, we have written g as a product of two of the
generators of Nc(H). Thus,

S1 = {g ∈ G|gψh for some h ∈ H} ⊂ 〈ghg−1|g ∈ G, h ∈ H〉 = Nc(H).

Now instead suppose that g1 belongs to the set of canonical generators for Nc(H)
where g1 = g3h1g

−1
3 for g3 ∈ G and h1 ∈ H. Suppose also that g2 ∈ G. Note that

g2 = g3eg
−1
3 g2e,

so g2 ∈ g3Hg−13 g2H. Note also that

g1g2 = g3h1g
−1
3 g2e,

so g1g2 ∈ g3Hg−13 g2H, as well. It follows that g2ψg1g2.

Consider the element g ∈ Nc(H) where g =
∏k

i=1 gi with each gi of the form

γihiγ
−1
i for some γi ∈ G and some hi ∈ H. Since gk ∈ γkHγ

−1
k H and e =

γkeγ
−1
k e ∈ γiHγ−1k H, we have that gkψe and thus gk ∈ S1.

By our previous reasoning it follows that gkψgk−1gk, so gk−1gk ∈ S2. By induc-

tion we see that g =
∏k

i=1 gi ∈ Sk ⊂ S. Since for any g ∈ Nc(H) we have that
g ∈ S, it follows that Nc(H) ⊂ S.

We now show that S ⊂ Nc(H). Note that the left cosets of Nc(H) partition the
left cosets of H as well as the elements of G. It follows that the blocks induced by
Nc(H) partition the blocks induced by H. We now assume towards a contradiction
that S 6⊂ Nc(H).

Since we assume S ) Nc(H) there exist some a, b ∈ S such that aψb with
a ∈ Nc(H) and b /∈ Nc(H). By definition of ∼ there must then exist blocks B1, B2

induced by H such that B1ψB2 where a ∈ B1 and b ∈ B2. This implies that there
exists some c ∈ G such that c ∈ B1 ∩B2.

Let B2 = αHβH. Then there exists some h ∈ H such that c ∈ αhβH with
αhβH 6⊂ Nc(H). Since the cosets of Nc(H) partition G and αhβH 6⊂ Nc(H), this
is a contradiction, as the element c belongs to both Nc(H) in addition to another,
distinct coset of Nc(H). It must then be that S ⊂ Nc(H).

As we already had containment in the other direction, this establishes that S =
Nc(H) and that the relation ∼ is well-defined.

Since we now know that S = Nc(H), we have that g1 ∼ g2 for g1, g2 ∈ G if and
only if there exists some a ∈ G such that g1, g2 ∈ aNc(H). This is the definition of
the relation induced on the elements of G by the left cosets of Nc(H). �

The generalized quotient of G by H may then be defined as the group of equiv-
alence classes of elements of G under the relation ∼ induced by H as above. We
have already seen that our this operation is natural, for we began examining blocks
induced by H ≤ G and made the innocent identification of two blocks with a
nonempty intersection. The described completion of this relation is precisely that
induced by (left) cosets of Nc(H) on the elements of G. It is now apparent that
the appropriate extension of quotients of a group G to nonnormal subgroups H is
merely taking the quotient G/Nc(H). Of course, this agrees with the usual quotient
construction when H E G.

4. The Block Relation ρ

Again take G to be a group and take H to be a subgroup of G, in particular a
nonnormal subgroup. One might wonder what happens if, upon discovering that
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the product of two cosets of H was not always a coset, we make the following
definition.

Definition 5. (Relation ρ) Let B1 and B2 be left blocks induced by H ≤ G. We
say that B1ρB2 if B1 ∩B2 6= ∅.

Essentially we would like to “glue together” blocks induced by H until we have
a collection of disjoint subsets of G which form a group under elementwise multi-
plication. This was, in fact, the original motivation for the present paper, but the
previous argument in terms of the relation θ on individual group elements turned
out to be easier to produce. Based on that argument we now know that such a
“gluing” process must ultimately yield an equivalence relation on blocks induced
by H which corresponds to the relation induced by Nc(H) on the elements of H.

As we saw with the relations θ and ψ, it is trivial that ρ is reflexive and symmet-
ric, but it is not in general transitive1. For example, if we takeG to be the symmetric
group on {0, 1, 2} and take H to be the subgroup generated by the transposition
(2, 3) then one can verify that HHρ(1, 2)H(1, 2)H and (1, 2)H(1, 2)HρH(1, 2)H,
but it is not the case that HHρH(1, 2)H as the cosets of H in G are disjoint. If ρ
is transitive then we have the following result.

Lemma 3. Suppose ρ is transitive. Then the elements of the blocks B such that
BρH are precisely the elements of Nc(H).

Proof. Assume BρH. Then given any b ∈ B we have that bψh for some h ∈ H
since BρH implies that B∩H 6= ∅ and thus b, h ∈ B. By our main result we know
that b ∈ Nc(H), so certainly B ⊂ Nc(H) for every BρH.

Now suppose we have some block C with c ∈ C such that c ∈ Nc(H). Then
again by our main result we know that

cψbkψbk−1ψ . . . ψb1ψh

for some bi such that bi ∈ Bi for blocks Bi. Then by definition of ψ we have that

CρBkρBk−1ρ · · · ρB1ρH

so by transitivity of ρ we have CρH. It follows that the blocks B such that BρH
are precisely the elements of Nc(H). �

In other words, if ρ is transitive then Nc(H) =
⋃
{B|B∩H 6= ∅} for any H ≤ G.

5. Example Computations

The study of this generalized quotient process was heavily aided by the exami-
nation of examples drawn up by scripts using SageMath (http://www.sagemath.
org/). These scripts can be found at https://github.com/caten2/NonnormalQuotient.
Some sample output follows.
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Figure 1. Quotient of S3 by H = 〈(1, 2)〉.
Nc(H)

H (2, 3)H (1, 3, 2)H
() (1, 2) (2, 3) (1, 2, 3) (1, 3, 2) (1, 3)

Nc(H)

H
() () (1, 2) (2, 3) (1, 2, 3) (1, 3, 2) (1, 3)

(1, 2) (1, 2) () (1, 3, 2) (1, 3) (2, 3) (1, 2, 3)

(2, 3)H
(2, 3) (2, 3) (1, 2, 3) () (1, 2) (1, 3) (1, 3, 2)

(1, 2, 3) (1, 2, 3) (2, 3) (1, 3) (1, 3, 2) () (1, 2)

(1, 3, 2)H
(1, 3, 2) (1, 3, 2) (1, 3) (1, 2) () (1, 2, 3) (2, 3)

(1, 3) (1, 3) (1, 3, 2) (1, 2, 3) (2, 3) (1, 2) ()

Figure 2. Quotient of S3 by H = 〈(1, 3)〉.
Nc(H)

H (2, 3)H (1, 2)H
() (1, 3) (2, 3) (1, 3, 2) (1, 2) (1, 2, 3)

Nc(H)

H
() () (1, 3) (2, 3) (1, 3, 2) (1, 2) (1, 2, 3)

(1, 3) (1, 3) () (1, 2, 3) (1, 2) (1, 3, 2) (2, 3)

(2, 3)H
(2, 3) (2, 3) (1, 3, 2) () (1, 3) (1, 2, 3) (1, 2)

(1, 3, 2) (1, 3, 2) (2, 3) (1, 2) (1, 2, 3) (1, 3) ()

(1, 2)H
(1, 2) (1, 2) (1, 2, 3) (1, 3, 2) (2, 3) () (1, 3)

(1, 2, 3) (1, 2, 3) (1, 2) (1, 3) () (2, 3) (1, 3, 2)

Figure 3. Quotient of S3 by H = 〈(2, 3)〉.
Nc(H)

H (1, 2)H (1, 2, 3)H
() (2, 3) (1, 2) (1, 3, 2) (1, 2, 3) (1, 3)

Nc(H)

H
() () (2, 3) (1, 2) (1, 3, 2) (1, 2, 3) (1, 3)

(2, 3) (2, 3) () (1, 2, 3) (1, 3) (1, 2) (1, 3, 2)

(1, 2)H
(1, 2) (1, 2) (1, 3, 2) () (2, 3) (1, 3) (1, 2, 3)

(1, 3, 2) (1, 3, 2) (1, 2) (1, 3) (1, 2, 3) () (2, 3)

(1, 2, 3)H
(1, 2, 3) (1, 2, 3) (1, 3) (2, 3) () (1, 3, 2) (1, 2)

(1, 3) (1, 3) (1, 2, 3) (1, 3, 2) (1, 2) (2, 3) ()
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