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Introduction

A magma is an algebraic structure (S, f) consisting of an underlying set S and
a single binary operation f : S2 → S. Much is known about specific families of
magmas (semigroups, monoids, groups, semilattices, quasigroups, etc.) as well as
magmas in general as treated in universal algebra. We seek to relate the study of
magmas to the study of corresponding geometric objects. In order to do this we
first analyze unary operations by way of their graphs. We show how function com-
position can be encoded by matrix multiplication, then generalize this to binary
function composition. We characterize the spectra of the graphs of unary opera-
tions, show that all such graphs are planar, and present some initial results on the
corresponding constructions for magmas.
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1. Unary Operations

Before we tackle magmas we examine the case of unary operations. We restrict
ourselves to the single-sorted situation, so our unary operations are all of the form
f : S → S for some underlying set S.

1.1. Operation Digraphs. We can view a unary operation as a set

{(s, f(s)) | s ∈ S}.

This set can be seen as the edge set of a digraph.

Definition (Operation digraph). Let f : S → S be a unary operation. The oper-
ation digraph (or functional digraph[16, section 1.4]) of f , written Gf , is given by
Gf = G(S,E) where

E = {(s, f(s)) | s ∈ S}.

We can obtain unary operations from binary operations by fixing one of the
arguments.

Definition. Let f : S2 → S be a binary operation and let s ∈ S. The left operation
digraph of s under f , written GLfs, is the operation digraph of fLs : S → S where

fLs (x) := f(s, x) for x ∈ S. The right operation digraph of s under f , written GRfs,
is defined analogously.

Naturally these graphs are identical in the case that f is commutative, allowing
us to safely drop the superscript and simply speak of the operation digraph in ques-
tion. This is the case for both addition and multiplication over Z3. The operation
digraphs of each element from Z3 under addition and multiplication follow.

G+0

0

12

G+1

0

12

G+2

0

12
G×0

0

12

G×1

0

12

G×2

0

12
Such graphs appear in many contexts in mathematics. One can find them in the

theory of semigroups[6], which deals in part with sets of functions from a set to
itself. They are also studied at the intersection of number theory and dynamics[3].
The reader familiar with group theory will note the obvious connection between
operation digraphs and Cayley graphs[5, section 30]. There is pure graph-theoretic
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work on operation digraphs[12, 7] as well as an algebraic theory of monounary
algebras[9], which are the corresponding algebraic structures.

1.2. Operation Matrices. For the rest of this paper we take our operations to be
defined on a finite set of inputs. Matrices can be used to encode all of the relevant
information about a digraph. In order to do this we fix a canonical ordering on any
underlying set we use.

Definition (Adjacency matrix). Let G(V,E) be a digraph, let |V | = n, and fix an
order on the vertex set V . The adjacency matrix A for G under the given order on
V is the n× n matrix whose ij-entry is 1 if there is an edge in G from vi to vj and
0 otherwise.

We can use adjacency matrices to study unary operations, as each operation
digraph has a corresponding matrix. Below we give the adjacency matrices for
the six operation digraphs depicted previously. We write ALfs to indicate the ad-

jacency matrix of GLfs and similarly write ARfs to indicate the adjacency matrix of

GRfs. Again we omit the superscript because the operations under consideration are
commutative.

A+0 =

1 0 0
0 1 0
0 0 1

 A+1 =

0 1 0
0 0 1
1 0 0

 A+2 =

0 0 1
1 0 0
0 1 0


A×0 =

1 0 0
1 0 0
1 0 0

 A×1 =

1 0 0
0 1 0
0 0 1

 A×2 =

1 0 0
0 0 1
0 1 0


It is not difficult to see that in general any adjacency matrix for an operation

digraph will have a single 1 in each row and that those corresponding to bijections
will be permutation matrices. In this case A+0 = A×1, since adding 0 and mul-
tiplying by 1 perform the same action on Z3. This is equivalent to noting that 0
and 1 are the identity elements for their respective binary operations or that as
functions from Z3 to itself f(x) := 1x and g(x) := x+ 0 are the same.

We have a similar representation for the elements of the underlying set S. Let
us identify the element si with the row vector whose i-entry is 1 and whose other
entries are 0. Continuing our Z3 example, we have the following identifications.

s0 =
[
1 0 0

]
s1 =

[
0 1 0

]
s2 =

[
0 0 1

]
Remember that the entries in the vectors are elements of C, while the left-hand-sides
indicate members of Z3.

Multiplying a vector by the adjacency matrix of an operation digraph corre-
sponds to applying the corresponding function to the corresponding element. That
is, instead of computing 1 + 2 = 0 in Z3 we can compute

s2A+1 =
[
0 0 1

] 0 1 0
0 0 1
1 0 0

 =
[
1 0 0

]
= s0

or

s1A+2 =
[
0 1 0

] 0 0 1
1 0 0
0 1 0

 =
[
1 0 0

]
= s0
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There are two competing conventions here. Usually when we regard matrices as
linear transformations we think of them as mapping column vectors on the right
into row vectors. Graph theory indicates the opposite behavior, with function
application occurring on the right.

1.3. Graph Treks. Recall that given a graph G = (V,E), which need not be
simple and may be directed, we have the following theorem.

Theorem. Let A be the adjacency matrix for G with a given vertex ordering. Then
(Ak)ij for k ∈ N is the number walks of length k from vi to vj in G.

Now instead suppose we also have a graph H on the same set of vertices under
the same ordering but with a possibly distinct set of edges from those in G. Let B
be the adjacency matrix for H. Then it is natural to consider the significance of
(AB)ij where AB is the usual matrix product of A and B. The following definition
and theorem provide a useful way to interpret such an expression.

Definition. Let (G1, G2, . . . , Gk) be a tuple of graphs on a common set of vertices
V . A trek (or (vi, vj)-trek) on (G1, G2, . . . , Gk) is an ordered list of vertices and
edges vi, e1, . . . , ek, vj where et ∈ E(Gt) is an edge joining the vertices before and
after it in the list.

Theorem. Let (G1, G2, . . . , Gk) be a tuple of graphs on a set of vertices V under
a given vertex ordering and let A1, A2, . . . , Ak be the corresponding adjacency ma-
trices. Then (A1A2 · · ·Ak)ij is the number of treks on (G1, G2, . . . , Gk) of length k
from vi to vj.

Proof. Note that by definition the number of treks of length 1 from vi to vj along
an edge from G1 is given by (A1)ij . Now suppose inductively that we have that
(A1A2 · · ·Ak−1)ir is the number of treks of length k − 1 from vi to vr whose tth

step is along an edge from Gt.
Any trek of length k from vi to vj consists of a trek of length k − 1 from vi to

vr followed by a trek of length 1 (an edge) from vr to vj for some vertex vr ∈ V .
By our inductive hypothesis there are (A1A2 · · ·Ak−1)ir treks of the first kind and
there are (Ak)rj of the second. For each vr ∈ V the number of treks of length k
from vi to vj which pass through vr on their penultimate step is

(A1A2 · · ·Ak−1)ir(Ak)rj .

The total number of all treks of length k from vi to vj is then the sum over all
possible vr of this quantity, so there are∑

r

(A1A2 · · ·Ak−1)ir(Ak)rj

such treks, but this is precisely (A1A2 · · ·Ak)ij . �

This interpretation of such a product has obvious applications in finding walks
in a graph G subject to a variety of secondary conditions by taking each of the
Gt to be a subgraph of G. We now proceed to make use of the interpretation
for a somewhat less literal purpose: counting solutions to equations in algebraic
structures.
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1.4. Counting Solutions to Equations. We now continue to examine Z3 by
noting that if x is a solution to the equation 2x+ 1 = 0 in Z3 then there must be a
trek of length 2 from x to 0 whose first step is along an edge from G×2 and whose
second step is along an edge from G+1. We can then check whether such an x exists
by multiplying the corresponding adjacency matrices A×2 and A+1. We find that

A×2A+1 =

1 0 0
0 0 1
0 1 0

0 1 0
0 0 1
1 0 0

 =

0 1 0
1 0 0
0 0 1

 ,
from which we conclude that there is exactly one such trek, which begins at x = 1.
The only solution to 2x + 1 = 0 in Z3 is then x = 1. This process for solving
equations can be stated in general as follows.

We first introduce a bit of notation. Let {fp}p∈P be an indexed set of functions
from S to itself and letQ be a finite (possibly empty) sequence consisting of elements
of P . Also let s ∈ S. When Q is the empty sequence we write fQ(s) to indicate the
element s itself. When Q is a nonempty sequence with a last element q, we write
fQ(s) to denote fq(f

Q∗
(s)), where Q∗ is the subsequence of Q which contains all

but the last entry q in Q.

Theorem. Let S be an ordered finite set of elements and let {fp}p∈P where fp : S →
S be an indexed collection of functions. Let Gp = G(S,Ep) be the operation digraph
for fp and let Ap be the adjacency matrix for Gp under the given ordering for S.
If Q = {qn}kn=1 is a finite sequence of k elements of P and y = sj is a fixed
element of S we have that the number of x ∈ S for which fQ(x) = y is exactly∑|S|
i=1

(∏k
n=1(Aqn)

)
ij

.

Proof. Since we take Gp = G(S,Ep) to be an operation digraph, the edge set Ep is
defined as Ep = {(s, fp(s)) | s ∈ S}. Any edge (u, v) ∈ Ep corresponds to obtaining
v by applying fp to u, so any such edge tells us that the pair x = u, y = v is a
solution to the equation fp(x) = y. It follows that a finite trek from x to y along
operation digraphs can be interpreted as a sequence of true equations indexed by
some sequence Q = {q1, . . . , qk}. That sequence of equations can be written as
{fqn(un) = vn}kn=1, where vn = un+1. That is, the output of one function is the
input of the next in this view of a valid trek.

We can then see that taking the first and last vertices in the sequence of un and
vn solving each of the successive equations fsn(x) = y gives us the elements u and v
respectively which solve an equation of the form fqk(. . . fq2(fq1(x))) = y. We then
have that each such trek corresponds to exactly one such pair solving the equation

in question. As the matrix product
∏k
n=1(Aqn) has the number of such treks from

si to sj as its ijth entry, the total number of entries in the jth column which are
nonzero gives the number of such treks beginning at any vertex and ending at sj
and hence the number solutions to the single-variable equation fQ(x) = y for any
fixed y ∈ S, as well.

We also know that if
(∏k

n=1(Aqn)
)
ij
6= 0 then

(∏k
n=1(Aqn)

)
ij

= 1. This

is because the number of valid treks from si to sj is a nonnegative integer and
assuming that there exist two or more such treks from si to sj leads us to conclude
that at some step along the trek, say the nth one, there are two distinct vn such
that fqn(un) = vn, which contradicts that fqn is a function. It then follows that
each entry in the matrix is either 0 or 1, with the sum of all the (nonzero) entries
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in a given column j giving the total number of valid treks beginning at any vertex
si and ending at sj , which is also the number of solutions x = si to fQ(x) = y for
a fixed y = sj . We can take the total succinctly by summing over all rows i, so the

number of solutions x is
∑|S|
i=1

(∏k
n=1(Aqn)

)
ij

. �

Note that the calculation in the example above actually gave us the adjacency
matrix for the digraph corresponding to the map x 7→ 2x+ 1 in Z3, from which we
can obtain information about the solutions to equations of the form 2x + 1 = y.
We expand on this idea in order to obtain lower bounds on the number of solutions
to equations.

In order to obtain bounds on the number of distinct y for which there is a solution
to an equation of the form fQ(x) = y, we make use of a theorem due to Sylvester.

Theorem (Sylvester’s rank inequality). Let U , V , and W be finite-dimensional
vector spaces, let A be a linear transformation from V to W , and let B be a linear
transformation from U to V . Then rankAB ≥ rankA + rankB − dim(V ), where
AB is the matrix product of the matrices corresponding to A and B.

In particular, if A and B are linear transformations from a vector space V to
itself then we have that both rankAB ≥ rankA+ rankB−dim(V ) and rankBA ≥
rankA + rankB − dim(V ). Also, if we have a third linear transformation C from
V to itself then we can conclude that

rankABC ≥ rankAB + rankC − dim(V )

≥ rankA+ rankB + rankC − 2 dim(V ).

By induction we see that for a finite collection of such transformations {Ai}i∈I we
have rank

∏
i∈I Ai ≥

(∑
i∈I rankAi

)
− (|I| − 1) dimV .

As the adjacency matrix for an operation digraph for an operation from a finite
set S to itself can be viewed as a linear transformation from C|S| to itself, we can
apply that last statement to find a lower bound for the number of distinct y for
which there exist solutions to an equation of the form fQ(x) = y.

We will consider the equation(
(3(x+ 2))3

)((3(x+2))3)
= y

over S = Z4 as an example. Let f1(x) = x+2, f2(x) = 3x, f3(x) = x3, and f4(x) =
xx. Note that the equation under consideration can be rewritten as fQ(x) = y,
where Q is the sequence (1, 2, 3, 4). Each of these functions has an associated
operation digraph over Z4. The standard adjacency matrices corresponding to
each function are as follows.

A1 = A+2 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 A2 = A×3 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0



A3 = AR∧3 =


1 0 0 0
0 1 0 0
1 0 0 0
0 0 0 1

 A4 = AR↑2 =


0 1 0 0
0 1 0 0
1 0 0 0
0 0 0 1


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Since rankA+2 = rankA×3 = 4 and rankAR∧3 = rankAR↑2 = 3, we have that

rank

4∏
n=1

An ≥

(
4∑

n=1

rankAn

)
− (|I| − 1)|S|

= (4 + 4 + 3 + 3)− (4− 1)4

= 2.

It then must be that there are at least two nonzero columns in the resultant matrix
and therefore at least two distinct y ∈ Z4 such that the equation in question has at
least one solution x ∈ Z4.

We also have the following lemma, which tells us that we can apply the result
of the previous section directly to functions on a finite set without resorting to the
formalism invoked earlier.

Proposition (Sylvester’s inequality for functions). Let X, Y , and Z be finite sets
and let f : X → Y and g : Y → Z be functions. Then

|(g ◦ f)(X)| ≥ |f(X)|+ |g(Y )| − |Y |.

Proof. Let Tz = {y ∈ Y | g(y) = z} and let T ⊂ Y such that |T ∩ Tz| = 1 for all
z ∈ Z. That is, let T be a set containing exactly one preimage under g of each
element in g(Y ) and no other elements. Consider that for every y ∈ f(X) ∩ T we
have an x where f(x) = y such that (g ◦ f)(x) ∈ (g ◦ f)(X). It follows that

|(g ◦ f)(X)| ≥ |f(X) ∩ T |

with equality where T is chosen so that f(x) ∩ T is maximal. Since we know for
any such intersection of sets that

|f(X) ∩ T | ≥ |f(X)|+ |T | − |Y |

and we know that |T | = |g(T )| = |g(Y )|, it follows that

|f(X) ∩ T | ≥ |f(X)|+ |g(Y )| − |Y |.

Thus, |(g ◦ f)(X)| ≥ |f(X)|+ |g(Y )| − |Y |, as desired. �

One can see that this proposition is analogous to that of Sylvester, with the
linear transformations and dimensions of the former corresponding to the functions
and cardinalities of the latter. This lemma shows that our use of operation digraphs
and linear algebra to obtain a lower bound on the number of solutions to equations
of the form fS(x) = y was actually unnecessary. In this case we likely could have
made the observation about functions directly, but the general method applied here
may allow one to produce less obvious statements about functions by translating
statements from linear algebra. Additionally, this analysis paved the way for the
study of binary operations.

2. Binary Operations

We now repeat what we just did, but with binary operations instead. Again, our
binary operations are of the from f : S2 → S for some underlying set S.
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2.1. Operation Hypergraphs. We can view a binary operation as a set

{(si, sj , f(si, sj)) | si, sj ∈ S}.

This set can be seen as the edge set of a directed 3-uniform hypergraph[1].

Definition (Operation hypergraph). Let f : S2 → S be a binary operation. The
operation hypergraph of f , written Gf , is given by Gf = G(S,E) where

E = {(si, sj , f(si, sj)) | si, sj ∈ S}.

For example, the operation hypergraph for Z3 under addition is

G+ = {(0, 0, 0), (0, 1, 1), (0, 2, 2), (1, 0, 1), (1, 1, 2), (1, 2, 0), (2, 0, 2), (2, 1, 0), (2, 2, 1)}

and the operation hypergraph for Z3 under multiplication is

G× = {(0, 0, 0), (0, 1, 0), (0, 2, 0), (1, 0, 0), (1, 1, 1), (1, 2, 2), (2, 0, 0), (2, 1, 2), (2, 2, 1)}.

2.2. Operation Tensors. Tensors can be used to encode all the relevant informa-
tion about a hypergraph. We use the näıve analog of the directed adjacency matrix
here[4]. Other authors have explored different generalizations[13, 14].

Definition (Adjacency tensor). Let G(V,E) be a 3-uniform hypergraph, let |V | =
n, and fix an order on the vertex set V . The adjacency tensor A for G under the
given order on V is the n× n× n hypermatrix whose ijk-entry is 1 if (vi, vj , vk) is
an edge in G and 0 otherwise.

Given a binary operation f we write Af to indicate the adjacency tensor of the
operation hypergraph of f . Recall that given such a tensor we can obtain a bilinear
map Af : CS × CS → CS where given x1 = (as)s∈S and x2 = (bs)s∈S from RS we
define

Af (x1, x2) :=
∑

si,sj ,sk∈S
asibsj (Af )ijksk =

∑
si,sj∈S

asibsjf(si, sj).

Since f maps basis elements of CS to other basis elements of CS , we can always
extend a binary operation f to a bilinear map in this way.

For example, given A+ for the addition operation on Z3 and x1, x2 ∈ {0, 1, 2}
we have that

A+(x1, x2) =
∑

si,sj∈Z3

asibsj (si +Z3 sj) = x1 +Z3 x2,

so A+ agrees with f where both are defined. It follows immediately from the
definition that a binary operation f and this bilinear map always agree in this
sense. In a slightly more exotic calculation, we can also “add 1

2x1 and x2 in Z3”
where x1, x2 ∈ {0, 1, 2}. We see that

A+

(
1

2
x1, x2

)
=

1

2

∑
si,sj∈Z3

asibsj (si +Z3 sj) =
1

2
(x1 +Z3 x2).

Since we saw that matrix multiplication corresponded to composition of unary
operations, we are led to consider what sort of hypermatrix operation corresponds
to composing binary operations.
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2.3. Hypergraph Odysseys. There are many ways to compose binary operations.
Let f, g : S2 → S. One possible composite function is given by

(x, y, z) 7→ g(f(x, y), z)

while another is given by

(x, y, z) 7→ f(f(x, x), g(x, f(x, f(y, z)))).

If we are going to handle binary operation composition in the same way that we han-
dled unary operation composition we are going to need to define an infinite family
of hypermatrix products, one for each possible way we can compose operations.

In order to do this, we refer to a generalized notion of the graph treks defined
earlier. At that time we had considered the equation 2x + 1 = y in Z3, fixing y
so that we had a single variable. We now let y vary and view the situation as
follows, with the blue triangle representing an edge in G× and the green triangle
representing an edge in G+.

2x

x2

2x+ 1

1

In order for 2x + 1 = y to hold for a particular pair (x, y) ∈ Z2
3 we must have

that there exists some t ∈ Z3 such that (2, x, t) is an edge in G× and (t, 1, y) is an
edge in G+. Given such a t we have an example of a “generalized trek”.

Let (Gi = (S,Ei))i∈I be a sequence of directed hypergraphs, each ρ(i)-uniform
for some ρ(i) ∈ N. The following definition is more general than we actually need
for the moment, but the restriction to the case of only unary and binary operations
is no easier to state. In the following definition we write (µ ◦ ν)(e) to indicate the
result of applying ν to each of the entries of e which lie in the domain of ν, then
applying µ to each of the entries of the tuple ν(e) so obtained which lie in the
domain of µ.

Definition (µ,Σ-odyssey). Let X and Y be sets of variables and take Σ to be
a collection of pairs of the form (e, E) where E = Ei for some i ∈ I and e ∈
(X ] Y )ρ(i). If there exist evaluation maps µ : X → S (the endpoint evaluation
map) and ν : Y → S (the intermediate point evaluation map) such that for each
(e, E) ∈ Σ we have that (µ ◦ ν)(e) ∈ E then we say that the collection of edges
O = (µ ◦ ν)(e) is a Σ-odyssey on the Gi. We say that X is the set of end variables,
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Y is the set of intermediate variables, µ(X) is the set of endpoints, ν(Y ) is the set
of intermediate points, Σ is the odyssey type, and |Σ| is the length of the odyssey.
We call a Σ-odyssey O a µ,Σ-odyssey if µ : X → S is the endpoint evaluation map
of O for some fixed µ.

In our example above we have end variables X = {x, y, a, b} and intermediate
variable Y = {t}. Our Σ is given by Σ = {((a, x, t), G×), ((t, b, y), G+)}. We
consider only endpoint evaluation maps µ : X → Z3 such that µ(a) = 2 and µ(b) =
1. There are µ,Σ-odysseys for such µ. There are in fact 3. The first corresponds
to 2(0) + 1 = 1, with µ(x) = 0, µ(y) = 1, and ν(t) = 0. The second corresponds
to 2(1) + 1 = 0, with µ(x) = 1, µ(y) = 0, and ν(t) = 2. The last corresponds to
2(2) + 1 = 2, with µ(x) = 2, µ(y) = 2, and ν(t) = 1.

2.4. Counting Solutions to Equations. In the previous example we had to
restrict ourselves to endpoint evaluation maps with certain properties in order to
examine solutions to 2x + 1 = y. It is more natural for us to define a generalized
matrix product first in the context of equations with no constants, so we now
consider the equation ax + b = y over Z3. This equation has a corresponding
product.

Let ϕ denote the logical formula

ϕ(a, b, x, y) := (∃t ∈ Z3)((a, x, t) ∈ G× ∧ (t, b, y) ∈ G+).

This formula returns true if ax+ b = y and false otherwise. Equivalently, ϕ tells us
whether or not there exists an odyssey as described previously. We can encode this
logical formula as an arithmetic formula. Let A and B be arbitrary rank 3 tensors
over C. In an abuse of notation define a tensor ϕAB by

(ϕAB)ijkl :=
∑

t∈{0,1,2}

AiktBtjl.

The operation ϕ given by (A,B) 7→ ϕAB is the generalized matrix product of A
and B corresponding to the logical formula ϕ.

Since there is only one possible value for ax in Z3 we have that (ϕG×G+)ijkl is
always either 0 or 1. In fact, by simple definition-chasing one finds that ϕG×G+ is
the adjacency tensor for the composite operation

(a, b, x) 7→ ax+ b.

If we wish to restrict to the case where a = 2 and b = 1 we may simply obtain a
new tensor by taking only those entries in ϕAB with the corresponding coordinates
fixed. The resulting tensor has order 2 and is precisely the matrix product A×2A+1

obtained previously.
Although we refrain from presenting it here, these ideas lead to a tensor arith-

metic that expresses concepts such as tensor contraction and some of the products
used in spectral hypergraph theory[14] in a framework of relation composition.

3. Applications

Until this point we have primarily given definitions and results showing that
those definitions are consistent with each other in some sense. In the section on
unary operations we obtained bounds on the number of solutions to equations in one
variable, but we could have given the argument without using our framework. In
the second section we gave an equivalent way of counting the number of solutions to
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more general equations, but this is essentially nothing more than embedding func-
tion composition arithmetic in a larger space. We now present some applications
of the perspective developed here.

3.1. Embedding Dimension. We can study operations via the undirected ver-
sions of their operation hypergraphs. We begin with a unary operation.

Definition (Operation graph). Let f : S → S be a unary operation. The operation
graph of f , written Ḡf , is the simple graph G(V,E) which is constructed as follows.
For each edge e = (s, f(s)) in Gf define

σ(e) :=


{(s, ue), (ue, ve), (ve, s)} when f(s) = s

{(s, ue), (ue, f(s))} when f2(s) = s and f(s) 6= s

{e} otherwise

where ue and ve are new vertices unique to the edge e. Take E =
⋃
e∈E(Gf )

σ(e)

and let V be the union of S and all the ue and ve generated by applying σ to edges
e ∈ E(Gf ).

Note that this is not the graph of f in the more conventional sense, which we
have been calling the operation digraph of f . We subdivide edges in order to pass
to an undirected graph without ignoring loops ((s, s)) and 2-cycles ((s, f(s)) and
(f(s), s)) in Gf . The following figure illustrates these two degeneracies.

s = f(s)

σ

s = f(s)

ueve

s = f(f(s))

f(s)

σ

s = f(f(s))

f(s)

ue1ue2

Recall that every graph can be drawn without self-intersections in 3-dimensional
Euclidean space, but some cannot be drawn without self-intersections in 2-dimensional
Euclidean space. Those graphs which can be drawn in the plane are called planar
and those graphs which cannot be drawn in the plane without self-intersections are
called nonplanar.

Theorem. Every operation graph is planar.

Proof. A graph is planar if and only if it has a subgraph which is a subdivision of
either K5 or K3,3, which are the complete graph on 5 vertices and the complete
bipartite graph on 3 and 3 vertices, respectively.

Let f : S → S be a unary operation with operation graph Ḡf . We show by
contradiction that Ḡf cannot contain a subdivision of K5 or K3,3. Suppose first
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that Ḡf contains a subgraphH which is a subdivision ofK5. This subgraph contains
five vertices, say s1 through s5, with a sequence of edges between any two. Note
that the si for i ∈ {1, 2, 3, 4, 5} must correspond to elements of S, since the dummy
vertices ue and ve have degree 2 while the si have degree 4.

Consider the vertex s1. Although Ḡf is undirected, each of the vertices adjacent
to s1 in H must come from subdividing a directed edge in Gf . Since Gf is an
operation digraph, at most one of the vertices adjacent to s1 in H may correspond
to an outgoing edge in Gf .

Consider the sequence s1, s2, . . . , sn of vertices along the path between s1 and sn
in H (with dummy vertices omitted) where n ∈ {2, 3, 4, 5}. Suppose that f(s2) = s1
so that σ((s2, s1)) corresponds to an edge coming into s1 in Gf . Since Gf is
an operation digraph, it must be that f(s3) = s2, as otherwise we would have
f(s2) = s3, contradicting that f is a function. Thus, every edge incident to s1 in
H which comes from an incoming edge in Gf must give us a corresponding edge
incident to sn in H which comes from an outgoing edge in Gf .

In a slight abuse of terminology, let the in-degree of si in H be the number of
edges incident to si which come from incoming edges in Gf . We use the term out-
degree here analogously. The preceding argument says that the total out-degree of
the si is at least the sum of the in-degrees of the si. Since each si contributes at
least 3 to this total and there are 5 such vertices, the total out-degree of the si must
be at least 15. This is impossible, since there are only 5 such vertices, each of which
may have out-degree at most 1. It must be that Ḡf cannot contain a subdivision
of K5, after all.

The argument that Ḡf cannot contain a subdivision of K3,3 is essentially iden-
tical. We conclude that every Ḡf is planar. �

An alternative argument is that each of the points in S is either preperiodic under
f or is part of a nonpreperiodic orbit (extending infinitely in one or both directions)
of f . The graphs for the preperiodic points look like a cycles with directed trees
leading into them and the graphs for the infinite orbits look like paths. All of these
graphs are planar, so their disjoint union Gf is also planar, modulo cardinality
issues if we look at functions on infinite sets.

The above reasoning was not wasted however, since we can actually make a
slightly more general statement in this way.

Theorem. Let H be a subdivision of a simple graph H ′ with n vertices, each of
degree at least k + 1 for k ≥ 2. The graph H cannot appear as a subgraph of any
operation graph if k > n−1

2 .

Proof. Every step in the previous proof carries through here, with H ′ taking the
place of K5 and K3,3. We need k ≥ 2 so that the vertices of H ′ cannot correspond
to dummy vertices added when producing Ḡf from Gf , although the case where
k = 1 is not very interesting anyway. �

Additionally, the proof presented has a chance of extending to hypergraphs,
since it does not require us to understand the structure of the generalized orbits of
a binary operation. We now give the magma analog of an operation graph.

Definition (Operation complex). Let f : S2 → S be a binary operation. The
operation complex of f , written Ḡf , is the simplicial complex whose 2-faces are the
edges of the hypergraph G(V,E), which is constructed as follows. Write (a, b, c, d)2
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to indicate the set of all 2-faces of the simplex with vertices a, b, c, and d. For each
edge e = (si, sj , f(si, sj)) in Gf define

σ(e) :=



(si, ue, ve, we)2 when |{si, sj , f(si, sj)}| = 1

(si, sj , ue, ve)2 when |{si, sj , f(si, sj)}| = 2

(si, sj , sk, ue)2 when |{si, sj , f(si, sj)}| = 3 and τe ∈ f for some
nonidentity permutation τ

{e} otherwise

where ue, ve, and we are new vertices unique to the edge e. Take E =
⋃
e∈E(Gf )

σ(e)

and let V be the union of S and all the ue, ve, and we generated by applying σ to
edges e ∈ E(Gf ).

The above definition captures the “directed loops” and multiple edges possible
in a 3-uniform directed hypergraph in the same way the operation graph of a unary
operation did. A similar idea has been explored in the particular case of groups[8],
where the extra structure provided by the group axioms made a more specialized
construction possible.

It is known that every n-dimensional simplicial complex can be embedded with-
out intersections into R2n+1[10]. Given any magma (S, f) we then know that Ḡf
embeds into Rk but not Rk−1 for some k ∈ {3, 4, 5}.

Definition (Embedding dimension). Let (S, f) be a magma with operation com-
plex Ḡf . We refer to the minimal k such that the complex Ḡf embeds into Rk as
the embedding dimension of the magma (S, f).

The situation here is more complex than for unary operations. First note that
we can find examples of magmas of any finite order which embed into R3. To see
this, let (S, f) be a magma such that for every x, y ∈ S, x 6= y, we have that either
f(x, y) = x or f(x, y) = y. Every edge e ∈ Gf then contains at most 2 vertices
which belong to S, with the others being dummy vertices. We claim that embedding
Ḡf into R3 is accomplished by simply embedding the complete graph KS whose
vertices are the elements of S into R3. Suppose we have an embedding of KS into
R3 where each edge is mapped to a segment of a piecewise C1 curve. We can fit
the boundary of a tetrahedron into an envelope around the curve corresponding to
any edge in KS . We can take any such envelope to taper to the endpoints of the
curve in question, so we can always prevent tetrahedra obtained from two different
edges in Gf from overlapping. Finally, note that by the same reasoning we can
place a tetrahedron in a neighborhood of any vertex of KS , so the whole of Ḡf can
be embedded into R3 without self-intersections.

There are also magmas of embedding dimension 3 without this property. Con-
sider (Z3,+). A brief inspection will reveal that this magma can be embedded in
R3. Below is an image of such an embedding, with the elements of Z3 represented
by spheres. The face coloring serves only to help distinguish faces.
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Again let (S, f) be a magma. We demonstrate a technique for generating alge-
braic conditions which imply that the embedding dimension of (S, f) is at least 4.
Recall that the Klein bottle cannot be embedded in R3 without self-intersection.
We know the minimal triangulations of the Klein bottle[15] so we can orient such a
triangulation to obtain a minimal algebraic rule which implies that a given magma
has embedding dimension at least 4.

Consider the triangulation Kh12 from [15], which is pictured below. The hori-
zontal edges are to be identified in parallel and the vertical edges in antiparallel.

a b

cd
e

f

g h i

g h i g

f

e

g

We orient the faces of Kh12 in a manner consistent with the following partial
operation table. Note that not every possible orientation can come from an opera-
tion. On each triangular face we may choose a left input, right input, and output.
If we choose poorly we can designate two outputs for the same input pair in the
same order.
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a b c d e f g h i
a · c d e f g h i b
b · · · · · · · · ·
c · · · i b · · · ·
d · · · · i · · · ·
e · · · · · c b · ·
f · · · · · · i · c
g · · · · h · · · b
h · · · · · · · · e
i · · · · · · · · ·

This “forbidden substructure” cannot appear in any magma with embedding
dimension 3. We can extend our earlier example of magmas with embedding di-
mension 3 to produce a magma with embedding dimension 4. For each pair x, y
for which · appears in the table above define f(x, y) = x. None of these new de-
generate faces will change the embedding dimension of the magma, so the resulting
operation has embedding dimension 4.

It is immediate that embedding dimension can only decrease when considering a
submagma of a given magma. What relationship does embedding dimension have
with taking homomorphic images and products of magmas? If it only goes down
then we know that “magmas of embedding dimension at most k” is a variety and
hence an equational class by Birkhoff’s Theorem[2]. This would tell us that there
is a set of identities which characterize such magmas (and hence their operation
complexes). If not, we can show that it is impossible to produce such a characteri-
zation.

3.2. Spectrum Calculation. There is a very direct relationship between the spec-
trum of an operation digraph and the dynamics of the original function.

Theorem. Let f : S → S be a function on a set S of size n. Let m(j) denote the
number of j-cycles under f and let Zj denote the multiset which consists of m(j)
copies of each jth root of unity. The nonzero part of the spectrum of Af is the
multiset union

⋃
j Zj.

Proof. Fix an order on S which places the k periodic points of S under f first,
followed by the nonperiodic points of S. With respect to this order on S we can
write the adjacency matrix Af in block form as

Af =

[
S O
T U

]
where S is a k × k permutation matrix and U is an (n − k) × (n − k) matrix. We
know that O is an all-zero matrix because every periodic point is mapped to another
periodic point.

We can take our order on S so that U is a lower triangular matrix. To see this,
note that every nonperiodic point in S is either mapped to a periodic point under
f , in which case the corresponding row in U is all zero, or mapped to a nonperiodic
point. We can define a partial order ≤ on the nonperiodic points of S where si ≤ sj
if f(sj) = si. Put a total order on the nonperiodic elements of S so that si appears
before sj whenever si ≤ sj . This will place all of the 1 entries in U to the left of
the main diagonal, since each nonperiodic point is then mapped to a point that
precedes it in the order on S.
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Let It denote the t × t identity matrix. Since Af is lower block triangular
we have that λIn − Af is also lower block triangular, whence det(λIn − Af ) =
(det(λIk − S))(det(λIn−k − U)). Thus, the spectrum of Af is the multiset union
of the spectra of S and U. Note that the diagonal entries of U are all zero since
no nonperiodic point may be mapped to itself. This implies that the spectrum
of U is all zero. Thus, the entire nonzero spectrum of Af is that of S. Since S
is a permutation matrix we have that S is a matrix of finite order. By an earlier
analysis of the spectra of matrices of finite order[11], we have that the spectrum of
S is precisely the previously asserted nonzero spectrum of Af . �

In contrast with this complete description of the spectrum of an operation di-
graph, no such generic description of a spectrum for a uniform hypergraph is known
to this author. A possible future project is to use the special case of operation hy-
pergraphs as a stepping stone to the general case.
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