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1. Introduction

The game of Rock-Paper-Scissors (RPS) involves two players simultaneously
choosing either rock (r), paper (p), or scissors (s). Informally, the rules of the game
are that “rock beats scissors, paper beats rock, and scissors beats paper”. That is,
if one player selects rock and the other selects paper then the latter player wins,
and so on. If two players choose the same item then the round is a tie.

A magma is an algebra A := (A, f) consisting of a set A and a single binary
operation f : A2 → A. We will view the game of RPS as a magma. We let A :=
{r, p, s} and define a binary operation f : A2 → A where f(x, y) is the winning item
among {x, y}. This operation is given by the table below and completely describes
the rules of RPS. In order to play the first player selects a member of A, say x, at
the same time that the second player selects a member of A, say y. Each player
who selected f(x, y) is the winner. Note that it is possible for both players to win,
in which case we have a tie.

r p s
r r p r
p p p s
s r s s

In general we have a class of selection games, which are games consisting of a
collection of items A, from which a fixed number of players n each choose one,
resulting in a tuple a ∈ An, following which the round’s winners are those who
chose f(a) for some fixed rule f : An → A. We refer to an algebra A := (A, f) with
a single basic n-ary operation f : An → A as an n-ary magma or an n-magma. We
will sometimes abuse this terminology and refer to an n-ary magma A simply as a
magma. Each such game can be viewed as an n-ary magma and each n-ary magma
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can be viewed as a game in the same manner, providing we allow for games where
we keep track of who is “player 1”, who is “player 2”, etc. Again note that any
subset of the collection of players might win a given round, so there can be multiple
player ties.

The classic RPS game has several desirable properties. Namely, RPS is, in terms
we proceed to define,

(1) conservative,
(2) essentially polyadic,
(3) strongly fair, and
(4) nondegenerate.

Let A := (A, f) be an n-magma. We say that an operation f : An → A is conserva-
tive when for any a1, . . . , an ∈ A we have that f(a1, . . . , an) ∈ {a1, . . . , an}[1, p.94].
Similarly we call A conservative when f is conservative. We say that an operation
f : An → A is essentially polyadic when there exists some g : Sb(A)→ A such that
for any a1, . . . , an ∈ A we have f(a1, . . . , an) = g({a1, . . . , an}). Similarly we call A
essentially polyadic when f is essentially polyadic. We say that f is fair when for
all a, b ∈ A we have

∣∣f−1(a)
∣∣ =

∣∣f−1(b)
∣∣. Let Ak denote the members of An which

have k distinct components for some k ∈ N. We say that f is strongly fair when
for all a, b ∈ A and all k ∈ N we have

∣∣f−1(a) ∩Ak

∣∣ =
∣∣f−1(b) ∩Ak

∣∣. Similarly
we call A (strongly) fair when f is (strongly) fair. Note that if f (respectively,
A) is strongly fair then f (respectively, A) is fair, but the reverse implication does
not hold. We say that f is nondegenerate when |A| > n. Similarly we call A
nondegenerate when f is nondegenerate.

Thinking in terms of selection games we say that A is conservative when each
round has at least one winning player. We say that A is essentially polyadic when
a round’s winning item is determined solely by which items were played, not taking
into account which player played which item or how many players chose a particular
item. We say that A is fair when each item has the same probability of being the
winning item (or tying). We say that A is strongly fair when each item has the
same chance of being the winning item when exactly k distinct items are chosen for
any k ∈ N. Note that this is not the same as saying that each player has the same
chance of choosing the winning item (respectively, when exactly k distinct items
are chosen). When A is degenerate (i.e. not nondegenerate) we have that |A| ≤ n.
In the case that |A| ≤ n we have that all members of A|A| have the same set of
components. If A is essentially polyadic with |A| ≤ n it is impossible for A to be
strongly fair unless |A| = 1.

Extensions of RPS which allow players to choose from more than the three
eponymous items are attested historically. The French variant of RPS gives a pair
of players 4 items to choose among[6, p.140]. In addition to the usual rock, paper,
and scissors there is also the well (w). The well beats rock and scissors but loses
to paper. The corresponding Cayley table is given below. This game is not fair,
as
∣∣f−1(r)

∣∣ = 3 yet
∣∣f−1(p)

∣∣ = 5. It is nondegenerate since there are 4 items for 2
players to chose among. It is also conservative and essentially polyadic.

r p s w
r r p r w
p p p s p
s r s s w
w w p w w
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There has been some recent recreational interest in RPS variants with larger
numbers of items from which two players may choose. For example, the game
Rock-Paper-Scissors-Spock-Lizard[3] (RPSSL) is attested in the popular culture.
The Cayley table for this game is given below, with v representing Spock and l
representing lizard. This game is conservative, essentially polyadic, strongly fair,
and nondegenerate.

r p s v l
r r p r v r
p p p s p l
s r s s v s
v v p v v l
l r l s l l

It is folklore that the only “valid” RPS variants for two players use an odd number
of items. Currently this is mentioned on the Wikipedia entry for Rock-Paper-
Scissors without citation[5] and with a reference to a collection of such games[4].
In our language we have the following result. We give a proof of a more general
statement in the next section.

Theorem. Let A be a selection game with n = 2 which is essentially polyadic,
strongly fair, and nondegenerate and let m := |A|. We have that m 6= 1 is odd.
Conversely, for each odd m 6= 1 there exists such a selection game.

In the present paper we explore selection games for more than 2 simultaneous
players. We give a numerical constraint on which n-magmas of order m can be
essentially polyadic, strongly fair, and nondegenerate. We use this constraint to
examine permissible values of m for a fixed n and vice versa. We describe some
elementary algebraic properties of magmas which are generalized RPS games.

2. RPS Magmas

The magmas we are interested in are those corresponding to selection games
which have the four desirable properties possessed by Rock-Paper-Scissors.

Definition (RPS magma). Let A := (A, f) be an n-ary magma. When A is
conservative, essentially polyadic, strongly fair, and nondegenerate we say that A
is an RPS magma. When A is an n-magma of order m with these properties we
say that A is an RPS(m,n) magma. We also use RPS and RPS(m,n) to indicate
the classes of such magmas.

Note that in order for A to be fair we need that the number of items (m) divides
the number of tuples |An| = mn, which is always the case. This is certainly not a
sufficient condition, as we have seen, for example, that the French variant of RPS
is unfair.

Our first theorem generalizes directly to selection games with more than 2 play-
ers.

Theorem. Let A be a selection game with n players and m items which is essen-
tially polyadic, strongly fair, and nondegenerate. For all primes p ≤ n we have that
p - m. Conversely, for each pair (m,n) with m 6= 1 such that for all primes p ≤ n
we have that p - m there exists such a selection game.
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Proof. Since A is nondegenerate we must have that m > n.
Since A is strongly fair we must have that

∣∣f−1(a) ∩Ak

∣∣ =
∣∣f−1(b) ∩Ak

∣∣ for all

k ∈ N. As the m distinct sets f−1(a) ∩ Ak for a ∈ A partition Ak and are all the
same size we require that m | |Ak|. When k > n we have that Ak = ∅ and obtain
no constraint on m.

When k ≤ n we have that Ak is nonempty. As we take A to be essentially
polyadic we have that f(x) = f(y) for all x, y ∈ Ak such that {x1, . . . , xn} =
{y1, . . . , yn}. Let Bk denote the collection of unordered sets of k distinct ele-
ments of A. Note that the size of the collection of all members x ∈ Bk such
that {x1, . . . , xn} = {z1, . . . , zk} for distinct zi ∈ A does not depend on the choice
of distinct zi. This implies that for a fixed k ≤ n each of the m items must be the
winner among the same number of unordered sets of k distinct elements in A. We
have that |Bk| =

(
m
k

)
so we require that m | |Bk| =

(
m
k

)
for all k ≤ n.

Let

d(m,n) := gcd

({(
m

k

) ∣∣∣∣ 1 ≤ k ≤ n
})

.

Since m |
(
m
k

)
for all k ≤ n we must have that m | d(m,n). Joris, Oestreicher, and

Steinig showed that when m > n we have

d(m,n) =
m

lcm(
{
kεk(m)

∣∣ 1 ≤ k ≤ n
}

)

where εk(m) = 1 when k | m and εk(m) = 0 otherwise[2, p.103]. Since we have
that m | d(m,n) and d(m,n) | m it must be that m = d(m,n) and hence

lcm
({

kεk(m)
∣∣∣ 1 ≤ k ≤ n

})
= 1.

This implies that εk(m) = 0 for all 2 ≤ k ≤ n. That is, no k between 2 and n
inclusive divides m. This is equivalent to having that no prime p ≤ n divides m, as
desired.

It remains to show that such games A exist when m 6= 1 and for all primes p ≤ n
we have that p - m. By this assumption we have that k - m whenever 2 ≤ k ≤ n.
Since (

m

k

)
=

m!

(m− k)!k!
= m

(m− 1) · · · (m− k + 1)

k(k − 1) · · · (2)

and none of the factors of k! divide m it must be that m |
(
m
k

)
for each 2 ≤ k ≤ n.

This implies that m | |Bk| for each k ≤ n so for each k ≤ n we can partition Bk

into m subcollections Ck := {Ck,r}r∈A indexed on the m elements of A, each with

|Ck,r| =
(m

k )
m . With respect to this collection of partitions C := {Ck}1≤k≤n we define

an n-ary operation f : An → A by f(a1, . . . , an) := r when {a1, . . . , an} ∈ Ck,r for
some k ∈ {1, . . . , n}. This map is well-defined since each {a1, . . . , an} contains
exactly k distinct elements for some k ∈ {1, . . . , n} and thus belongs to a unique
member of one of the partitions Ck. In order to see that the resulting magma
A := (A, f) is essentially polyadic choose some a0 ∈ A and let g : Sb(A) → A be
given by

g(U) :=

{
r when (∃k)U ∈ Ck,r

a0 when |U | > n
.

By construction we have that f(a1, . . . , an) = g({a1, . . . , an}) for all a1, . . . , an ∈ A.
The choice of a0 was immaterial. We now show that A is strongly fair. Given
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r ∈ A we have that f(a1, . . . , an) = r with (a1, . . . , an) ∈ Ak when {a1, . . . , an} ∈
Ck,r. Note that the number of members of Ak whose coordinates form the set
{a1, . . . , an} is the same as the number of members of Ak whose coordinates form
the set {b1, . . . , bn} for some other (b1, . . . , bn) ∈ Ak. This implies that each of the∣∣f−1(r) ∩Ak

∣∣ have the same size for a fixed k and hence A is strongly fair. To
see that A is nondegenerate observe that if 1 6= m < n then there is some prime p
dividing m. Since p ≤ m < n is prime we require that p - m, a contradiction. We
see that an essentially polyadic, strongly fair, nondegenerate n-ary magma always
exists when m 6= 1 and for all primes p ≤ n we have that p - m. �

We have given a description of all possible essentially polyadic, strongly fair,
nondegenerate n-magmas. There is always at least one RPS magma for every
n ≥ 2, although for brevity we refrain from demonstrating this.

3. Items as a Function of Players and Vice Versa

Our numerical condition on the existence of an RPS(m,n) magma allows us to
analyze how many items m can be used by a fixed number n of players in such a
game. For the n = 2 case we see that the only prime p ≤ 2 is 2 so 2 - m. For n = 3
we find that 2 - m and 3 - m. As 2 - m we have that m (mod 6) ∈ {1, 3, 5}. As
3 - m we have that m (mod 6) ∈ {1, 2, 4, 5}. Combining these conditions we see
that RPS(m, 3) algebras can only exist for m ≡ 1 (mod 6) or m ≡ 5 (mod 6). Our
example of an RPS 3-magma of order 5 was the smallest possible and we see that
the next largest RPS 3-magmas have order m = 6 + 1 = 7. A similar analysis can
be used to obtain a constraint on m modulo the product of all primes p ≤ n for
any fixed n. Since 2 and 3 are also the only primes p ≤ 4 we find that RPS(m, 4)
magmas can only exist for m ≡ 1 (mod 6) or m ≡ 5 (mod 6). In the case of n = 5,
however, we obtain that m (mod 30) ∈ {1, 7, 11, 13, 17, 19, 23, 29}. The smallest
RPS 5-magma thus has order 7.

Our numerical condition also allows us to fix the number of items m and ask how
many players n may use that number of items. By our previous work this question
is answered immediately.

Theorem. Given a fixed m there exists an RPS(m,n) magma if and only if n <
t(m) where t(m) is the least prime dividing m.

Proof. Suppose that there exists such a magma. We know that in this case p - m
for all p ≤ n. Since t(m) is a prime dividing m we must have that n < t(m).
Conversely, if n < t(m) then all primes p ≤ n are less than t(m) and as such do not
divide m. It is possible to show that RPS(m,n) magmas always exist when this
condition is met. �

Our result implies that the only RPS(2, n) magma has n = 1. Up to isomorphism
this is the magma (A, f) with A = {a, b} and f : A → A the identity map. There
are RPS(3, n) magmas for n ≤ 2. The game of RPS is one such RPS(3, 2) magma.
There are RPS(4, n) magmas only for n = 1. Up to isomorphism this is again a
set A with |A| = 4 and f = idA. There are RPS(5, n) magmas for n ≤ 4. The
game of RPSSL is one such RPS(5, 2) magma. In the full version of this paper we
will use a Z5 action to obtain an example of a RPS(5, 3) magma. Since 2 | 6 the
only RPS(6, n) magmas are unary. We can perform a similar analysis for any fixed
number of items m.
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4. Algebraic Properties of RPS Magmas

We give some basic algebraic properties of RPS magmas. Note that both the
original RPS magma and the magma for the French variant are contained in the
magma for RPSSL so subalgebras of RPS magmas may or may not be RPS magmas.
Observe that any subset of the universe of a conservative magma is a subuniverse.
For example, {r, s, l} is a subuniverse for RPSSL and the corresponding subalgebra
satisfies the numerical condition necessary for RPS magmas (being binary and of
order 3), yet the corresponding subalgebra fails to be strongly fair.

The class of RPS magmas is as far from being closed under products as possible.

Theorem. Let A and B be nontrivial RPS n-magmas with n > 1. The magma
A×B is not an RPS magma.

Proof. We show that A × B cannot be conservative. Let A := (A, f) and let
B := (B, g). Let x1, . . . , xn ∈ A be distinct and let y1, . . . , yn ∈ B be distinct.
Since f and g are conservative we have that f(x) = xi and g(y) = yj for some i and
j. It follows that (f × g)((x1, y1), . . . , (xn, yn)) = (xi, yj). Either i 6= j, in which
case (xi, yj) is not one of the (xi, yi) and A × B is not conservative, or i = j. In
this latter case we have that f is essentially polyadic so f(σ(x)) = f(x) for any
permutation σ of the xi. This implies that

f(x2, . . . , xn, x1) = f(x1, . . . , xn) = xi

so
(f × g)((x2, y1), . . . , (xn, yn−1), (x1, yn)) = (xi, yi).

Now (xi, yi) does not appear among the arguments of f × g so again we see that
A×B cannot be conservative and hence cannot be an RPS magma. �
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