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Commutator theory

Ralph Freese and Ralph McKenzie. Commutator theory for
congruence modular varieties. Vol. 125. London Mathematical
Society Lecture Note Series. Cambridge University Press,
Cambridge, 1987, pp. iv+227. isbn: 0-521-34832-3

We’ll be working through this text on commutator theory.
I’ll briefly give the idea of what it is commutator theory
generalizes, and then talk at some length about the setting in
which that generalization occurs.
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Commutator theory

Given a group G, we can obtain a lot of information by looking
at its subgroups, and in particular its normal subgroups.
Even more information may be gained by studying the
commutator of two normal subgroups.
Given normal subgroups M and N, their commutator [M,N]
is the normal subgroup of G which is generated by all
elements of the form m−1n−1mn where m ∈ M and n ∈ N.
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Commutator theory

We can think of the commutator as an operation on the
collection of normal subgroups of a group.
It has a number of nice properties, which aid in its calculation.
Since the commutator has been so useful in the study of
groups, we would like to generalize it to other kinds of
algebraic structures, such as rings or Boolean algebras.
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Some history

Universal algebra (or general algebra) is the appropriate
general setting for discussing algebraic structures.
Alfred North Whitehead’s 1898 ”A Treatise on Universal
Algebra” noted the commonalities between groups and
Boolean algebras.
Richard Dedekind did some early work on lattices of
subgroups around 1900.
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Some history

Lattice theory became an established discipline in its own
right during the 1930s and 1940s.
Garrett Birkhoff published ”On the Structure of Abstract
Algebras” in 1935, establishing universal algebra as a branch
of mathematics.
Birkhoff used lattice-theoretic ideas in his paper. In 1940 he
published a book on lattice theory.
Øystein Ore referred to lattices as ”structures” and led a
short-lived program during the 1930s where lattices were
hailed as the single unifying concept for all of mathematics.
During this period Saunders Mac Lane studied algebra under
Ore’s advisement. Mac Lane went on to become one of the
founders of category theory.
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Algebras

Let ω = {0, 1, 2, . . . } be the set of natural numbers.
An operation on a set A is a function f:An → A.
The arity of f:An → A is n.
Given a sequence of operation symbols Fi for i ∈ I, we say
that a function ρ: I → ω is a signature.
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Algebras

An algebra (of signature ρ) consists of a set A along with a
collection of operations Fi on A, where Fi has arity ρ(i).
We often denote such an algebra by

A = ⟨A, {Fi}i∈I⟩

or
A = ⟨A, {FA

i }i∈I⟩.
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Terms and polynomials

There are two concepts which generalize polynomials from
elementary algebra.
Given a signature ρ and a set of variables {vi}i ∈ ω, the terms
for ρ constitute the smallest set T containing the vi such that
if t1, . . . , tn ∈ T and Fi is an operation symbol with ρ(i) = n,
then Fi(t1, . . . , tn) ∈ T.
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Terms and polynomials

For each term in T and each algebra A of signature ρ, we
have a term operation tA obtained by interpreting t in the
context of A in the natural way.
The clone of term operations for an algebra A is the smallest
set of operations on A which contains all the basic operations
of A, is closed under composition, and which contains all the
coordinate projections.
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Terms and polynomials

Similarly, the clone of polynomial operations for an algebra A
is the smallest set of operations on A which contains all the
basic operations of A, is closed under composition, which
contains all the coordinate projections, and which includes all
the 0-ary constant operations on A.
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Identities

An identity (or (universally quantified) equation) is a formula

(∀v0, . . . , vn−1)(s(v0, . . . , vn−1) = t(v0, . . . , vn−1))

where s, t ∈ T for some set of terms T.
We abbreviate this by s ≈ t.
We write A |= s ≈ t when

(∀a0, . . . , an−1 ∈ A)(sA(a0, . . . , an−1) = tA(a0, . . . , an−1)).
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Identities

Given a class of algebras K, we write K |= s ≈ t when
A |= s ≈ t for each A ∈ K.
Given a set of equations Σ in a signature ρ, we write

Mod(Σ) = {A | A has signature ρ and (∀ϵ ∈ Σ)(A |= ϵ) } .

Classes of the form Mod(Σ) are called varieties (or equational
classes).
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HSP Theorem

Given a class of algebras K, we write H(K), S(K), and P(K)
to denote the classes of (isomorphic copies of) homomorphic
images, subalgebras, and products, respectively, of algebras
from K.
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HSP Theorem

Theorem (HSP Theorem (Birkhoff, 1935))
A class of similar algebras V is a variety if and only if V is closed
under forming homomorphic images, subalgebras, and products.

That is, V is a variety exactly when V = HSP(V).
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Homomorphisms

Definition (Homomorphism)
Given algebras A = ⟨A, {FA

i }i∈I⟩ and B = ⟨B, {FB
i }i∈I⟩ of the same

similarity type ρ: I → ω we say that a function h:A → B is a
homomorphism from A to B when for each i ∈ I and all
a1, . . . , aρ(i) ∈ A we have that

h(FA
i (a1, . . . , aρ(i))) = FB

i (h(a1), . . . , h(aρ(i))).
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Kernels

To each function we associate a binary relation as follows.

Definition (Kernel)
Given a function f:A → B the kernel of f is the binary relation

Ker(f) :=
{
(x, y) ∈ A2 ∣∣ f(x) = f(y)

}
.

We always have that Ker(f) is an equivalence relation on A.
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Congruences

It turns out that the kernels of homomorphisms of algebras always
have additional structure.
Definition (Substitution property, congruence)
Given an algebra A and a binary relation θ on A we say that

1 θ has the substitution property (with respect to A) when for
each n-ary basic operation f of A and all
x1, . . . , xn, y1, . . . , yn ∈ A such that xi θ yi for each
i ∈ {1, 2, . . . , n} we have that f(x1, . . . , xn) θ f(y1, . . . , yn) and

2 θ is a congruence of A when θ has the substitution property
and is an equivalence relation on A.
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Congruences

Using the definition of a homomorphism we see that the
kernel of each homomorphism has the substitution property
and is thus a congruence.
Is every congruence the kernel of a homomorphism?



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Congruences

The answer is yes.
We can show this by turning the map qθ:A → A/θ into a
homomorphism.
In order to do that we need to define an algebra A/θ with
universe A/θ such that qθ:A → A/θ becomes a
homomorphism.
Given a basic n-ary operation symbol f and some
a1, . . . , an ∈ A we need that

qθ(fA(a1, . . . , an)) = fA/θ(qθ(a1), . . . , qθ(an)).

This means we require

fA(a1, . . . , an)/θ = fA/θ(a1/θ, . . . , an/θ),

which we take as our definition of fA/θ.
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Congruences

Congruences generalize normal subgroups for groups and
two-sided ideals for rings.
For each normal subgroup N of a group G we have that the
relation {

(x, y) ∈ G
∣∣ x−1y ∈ N

}
is a congruence on G.
For each two-sided ideal I of a ring R we have that the relation

{ (x, y) ∈ R | x − y ∈ I }

is a congruence on R.
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Congruences

The congruences of an algebra A form a lattice under the
inclusion ordering, which we denote by Con(A).
An algebra is simple when it has exactly two congruences, and
subdirectly irreducible when its congruence lattice has exactly
one atom which lies below every nonzero congruence.
Simple groups include Z/pZ for a prime p or the alternating
groups An for n ≥ 5.
Subdirectly irreducible groups include the Abelian p-groups
Z/pnZ and the Prüfer groups Z(p∞).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Congruences

Another early result of Birkhoff is that every algebra A is
isomorphic to a subalgebra C of a product

∏
i∈I Ai where

1 each Ai is subdirectly irreducible,
2 each Ai is a homomorphic image of A, and
3 the projection of C onto coordinate i yields all of Ai.

Such an algebra C is said to be a subdirect product of the Ai.
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Congruences

We say that two congruences θ, ψ ∈ Con(A) commute when
θ ◦ ψ = ψ ◦ θ.
This necessarily means that θ ◦ ψ = θ ∨ ψ.
An algebra A is permutable when every pair of congruences of
A commute.
A variety is permutable when each algebra in that variety is
permutable.
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Congruences

Theorem (Mal’cev)
A variety V is permutable if and only if there is a term p(x, y, z) in
the language of V such that

p(x, x, y) ≈ y ≈ p(y, x, x)

holds in V.

Such a term is called a Mal’cev term.
For groups, we can take p(x, y, z) = xy−1z.
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Free algebras

For each variety V and each set X, there exists a free algebra
F ∈ V where

1 X ⊂ F,
2 X generates F, and
3 for each algebra A ∈ V and each function f:X → A we have

that there exists a unique homomorphism f̂:F → A with
f̂(x) = f(x) for each x ∈ X.
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Free algebras

We often use notation such as F(X) or FV(X) to indicate the
free algebra described previously.
If we write Ab for the variety of Abelian groups, we have free
algebras like FAb.
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Free algebras

Every algebra is a quotient of a free algebra.
Every variety has V = HSP(FV(X)) where X = {xi}i∈ω.
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Distributive lattices

Definition (Distributive lattice)
We say that a lattice L is distributive when L satisfies

x ∧ (y ∨ z) ≈ (x ∧ y) ∨ (x ∧ z).

We actually always have

x ∧ (y ∨ z) ≥ (x ∧ y) ∨ (x ∧ z)

so if we want to check that a lattice is distributive it suffices
to show that

x ∧ (y ∨ z) ≤ (x ∧ y) ∨ (x ∧ z).
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Distributive lattices

An algebra A is distributive when Con(A) is distributive.
A variety is distributive when each of its members is
distributive.
The variety of lattices is distributive.
The variety of (Abelian) groups is not distributive. Consider
the Klein 4-group Z2 ⊕ Z2.
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Distributive lattices

Theorem (Jónsson)
A variety V is distributive if and only if for some n there are terms
d0(x, y, z), . . . , dn(x, y, z) such that V satisfies

1 d0(x, y, z) ≈ x, dn(x, y, z) ≈ z,
2 di(x, y, z) ≈ x for i ≤ n,
3 di(x, x, y) ≈ di+1(x, x, y) for all even i < n, and
4 di(x, y, y) ≈ di+1(x, y, y) for all odd i < n.
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Modular lattices

Definition (Modular lattice)
We say that a lattice L is modular when for all y ∈ L we have that

z ≤ x implies x ∧ (y ∨ z) = (x ∧ y) ∨ z.

We actually always have that z ≤ x implies

x ∧ (y ∨ z) ≥ (x ∧ y) ∨ z

so if we want to check that a lattice is modular it suffices to
show that z ≤ x implies

x ∧ (y ∨ z) ≤ (x ∧ y) ∨ z.
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Modular lattices

An algebra A is modular when Con(A) is modular.
A variety is modular when each of its members is modular.
Every distributive lattice is modular.
The variety of groups is modular.
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Modular lattices

We are going to study the generalization of the commutator
operation on normal subgroups to a commutator operation on
the congruence lattices of algebras in congruence modular
varieties.
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Some textbooks

Clifford Bergman. Universal Algebra: Fundamentals and
Selected Topics. Chapman and Hall/CRC, 2011. isbn:
978-1-4398-5129-6
George M. Bergman. An invitation to general algebra and
universal constructions. Second. Universitext. Springer,
Cham, 2015, pp. x+572. isbn: 978-3-319-11477-4;
978-3-319-11478-1. doi: 10.1007/978-3-319-11478-1
Jonathan D. H. Smith and Anna B. Romanowska.
Post-Modern Algebra. 1st ed. Pure and Applied Mathematics:
A Wiley Series of Texts, Monographs and Tracts.
Wiley-Interscience, 1999. isbn: 0471127388,9780471127383

https://doi.org/10.1007/978-3-319-11478-1

