

Math 2001
Discrete Mathematics
Week 1
Subsets

Charlotte Aten

2026 January 14

Today's topics

- 1 Set-builder notation
- 2 Subsets
- 3 The power set

Set-builder notation

- We could write

$$\{0, 2, 4, 6, \dots\}$$

to mean the set of all (nonnegative) even numbers, but a more precise way to say this would be “All natural numbers of the form $2k$ where k can be any natural number.”.

- In *set-builder notation* this is

$$\{2k \in \mathbb{N} \mid k \in \mathbb{N}\}.$$

- We also sometimes write

$$\{2k \mid k \in \mathbb{N}\}$$

when the context is clear.

Set-builder notation

- We are allowed to use natural language for the condition when defining a set using this notation.
- For example,

$$\{ n \in \mathbb{N} \mid n \text{ is even} \}$$

is a perfectly cromulent definition, assuming our readers know what an even number is.

- We could also say

$$\{ n \in \mathbb{N} \mid n = 2k \text{ for some natural number } k \}.$$

Set-builder notation

- This notation allows us to specify intervals:

$$[2, 9] = \{ x \in \mathbb{R} \mid 2 \leq x \leq 9 \}$$

and

$$[1, 5) = \{ x \in \mathbb{R} \mid 1 \leq x < 5 \}.$$

Subsets

- Let $A = \{1, 3, \sqrt{2}\}$.
- It's not true that $\{1, 3\} \in A$, but every member of $\{1, 3\}$ is a member of A .
- Given sets B and A , we say that B is a *subset* of A when every member of B is also a member of A .
- We write $B \subset A$ to indicate this situation.
- It is true that $\{1, 3\} \subset A$.

Subsets

- We can think of \subset like \leq but for sets. You can write \subseteq if you prefer.
- It is always true that $S \subset S$ for any set S .
(Think $n \leq n$ for any $n \in \mathbb{N}$.)
- It is always true that $\emptyset \subset S$ for any set S .
(Think $0 \leq n$ for any $n \in \mathbb{N}$.)
- Let's try listing all the possible subsets of some small sets.