MATH 2130 LINEAR ALGEBRA HOMEWORK 12 DUE 2025 NOVEMBER 16

PROBLEM 1 (S8)

Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ by given by f(x,y) = (x+2y,3x+6y) and let $B = \{(1,3),(2,-1)\}$ be a basis for \mathbb{R}^2 . Find $[f]_B^B$.

PROBLEM 2 (S8)

Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ by given by f(x, y) = (x+2y, 3x+6y) and let $B = \{(1, 3), (2, -1)\}$ and $C = \{(1, 2), (1, 3)\}$ be bases for \mathbb{R}^2 . Find $[f]_B^C$.

PROBLEM 3 (S8)

Let $g: \mathcal{P}_2 \to \mathbb{R}^3$ be given by $g(ax^2 + bx + c) = (a + b + c, 2a - b, c)$ and let $B = \{x^2 + 1, x^2 + 2, x^2 + x\}$ and $C = \{(1, 1, 1), (0, 1, 1), (0, 0, 1)\}$ be bases for \mathcal{P}_2 and \mathbb{R}^3 , respectively. Find $[g]_B^C$.

PROBLEM 4 (S8)

Let $h: \mathcal{P}_2 \to \mathbb{R}^2$ be given by $h(ax^2 + bx + c) = (a + 2b + 3c, 0)$ and let

$$B = \{x^2, 3x + 1, 4x + 1\}$$

and $C = \{(1,1),(1,2)\}$ be bases for \mathcal{P}_2 and \mathbb{R}^2 , respectively. Find $[h]_B^C$.

PROBLEM 5 (S8)

Let $\alpha: \mathbb{R}^3 \to \mathbb{R}^3$ by given by $\alpha(x, y, z) = (x + y, x - 2y, x + 3y)$ and let

$$B = \{(1, 2, 3), (0, 1, 2), (0, 0, 3)\}$$

and $C = \{(1,2,0), (1,1,0), (1,2,4)\}$ be bases for \mathbb{R}^3 . Find $[\alpha]_B^C$.