
Math 2130 Linear Algebra Week 6 Dimension

Charlotte Aten

2025 October 1

Today's topics

- Bases
- 2 Dimension

Bases

Definition (Basis)

A set of vectors $\{v_1, v_2, \dots, v_k\}$ in a vector space V is a *basis* for V when

- (v_1, v_2, \ldots, v_k) is linearly independent.

Bases

Show that

$${x^2 + x + 1, x^2 + x + 2, x^2 + 2x + 3}$$

is a basis for P_2 .

Dimension

Definition (Dimension)

The dimension of a vector space V is the size of any basis for V.

Dimension

The preceding definition makes sense because of the following theorem.

Theorem

Each basis for a vector space V contains the same number of vectors as any other basis for V.

Dimension |

Definition (Row space)

The *row space* of an $m \times n$ matrix A is the subspace of \mathbb{R}^n spanned by the rows of A. We denote the row space of A by $\mathrm{Row}(A)$.

Dimension

- The rank of a matrix A is $\dim(\text{Row}(A))$.
- lacktriangle This is the same as the number of leading 1s in any echelon form of A.