Math 2130 Linear Algebra Week 5 Linear independence

Charlotte Aten

2025 September 26

Today's topics

- Linear independence
- $oxed{2}$ Other vector spaces beside \mathbb{R}^n

Definition

A finite nonempty set of vectors $\{v_1, v_2, \ldots, v_k\}$ in a vector space V is said to be *linearly dependent* when there exist scalars c_1, c_2, \ldots, c_k , at least one of which is nonzero, such that

$$c_1 v_1 + c_2 v_2 + \dots + c_k v_k = 0.$$

Definition

A finite nonempty set of vectors $\{v_1, v_2, \dots, v_k\}$ in a vector space V is said to be *linearly independent* when it is not linearly dependent.

- In \mathbb{R}^2 the spanning sets $\{(1,0),(0,1)\}$ and $\{(1,0),(1,1)\}$ are linearly independent. The spanning set $\{(1,0),(0,1),(1,2)\}$ is linearly dependent.
- The spanning set $\{(1,1,1),(1,1,2),(1,2,3)\}$ for \mathbb{R}^3 is also linearly independent.
- Even sets which do not span can be linearly independent. For example, $\{(1,1,1),(1,1,2)\}$ is linearly independent in \mathbb{R}^3 but does not span.
- \blacksquare Note that any set consisting of a single nonzero vector $\{v\}$ is linearly independent.
- On the other hand, any set containing the zero vector is linearly dependent.

Determine whether $\{(1,4,7),(2,5,8),(3,6,9)\}$ is linearly independent in \mathbb{R}^3 .

Determine whether $\{(1,4,7),(2,5,8),(3,6,9)\}$ is linearly independent in \mathbb{R}^3 . If we have

$$c_1(1,4,7) + c_2(2,5,8) + c_3(3,6,9) = (0,0,0)$$

then we must have a homogeneous system with augmented matrix

$$\begin{bmatrix} 1 & 2 & 3 & 0 \\ 4 & 5 & 6 & 0 \\ 7 & 8 & 9 & 0 \end{bmatrix}.$$

Determine whether $\{(1,4,7),(2,5,8),(3,6,9)\}$ is linearly independent in \mathbb{R}^3 .

This matrix has row-echelon form

$$\begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

so we can see that there is a free variable and hence infinitely many solutions. Thus, the set $\{(1,4,7),(2,5,8),(3,6,9)\}$ is linearly dependent.

Other vector spaces beside \mathbb{R}^n

- We can talk about spanning sets and linear independence for vector spaces other than \mathbb{R}^n .
- For example, $\{2x+1,5,x^2+x+1\}$ is a spanning set for \mathcal{P}_2 .