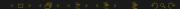
Math 2130 Linear Algebra Week 4 Vector spaces

Charlotte Aten

2025 September 17



Today's topics

Vector spaces

- We have seen many different collections of objects, such as vectors in \mathbb{R}^n and various sized matrices, which can be added as well as multiplied by scalars.
- At this point it may seem reasonable that the arithmetic of matrices should be thought of as some kind of generalization of the arithmetic of real numbers themselves.
- The concept of a vector space encompasses this idea, as well as several others we will use throughout the rest of the course.

Examples of vector spaces

- The vectors in \mathbb{R}^n where $(x_1, \ldots, x_n) + (y_1, \ldots, y_n) = (x_1 + y_1 + \ldots, x_n + y_n)$ and $s(x_1, \ldots, x_n) = (sx_1, \ldots, sx_n)$.
- The numbers in $\mathbb R$ with the usual addition and multiplication. Note that $\mathbb R = \mathbb R^1.$
- The matrices $\mathrm{Mat}_{m \times n}$ of size $m \times n$ where addition and scalar multiplication are done componentwise.

Examples of vector spaces

- The set of all functions $f: \mathbb{R} \to \mathbb{R}$ where (f+g)(x) = f(x) + g(x) and (sf)(x) = s(f(x)).
- The set of all functions $f: \mathbb{R}^n \to \mathbb{R}$ where $(f+g)(x_1,\ldots,x_n) = f(x_1,\ldots,x_n) + g(x_1,\ldots,x_n)$ and $(sf)(x_1,\ldots,x_n) = s(f(x_1,\ldots,x_n)).$

Examples of vector spaces

- The set of all quadratic polynomials $\mathcal{P}_2 = \left\{ \begin{array}{l} ax^2 + bx + c \mid a,b,c \in \mathbb{R} \end{array} \right\} \text{ with } \\ (a_1x^2 + b_1x + c_1) + (a_2x^2 + b_2x + c_2) = \\ (a_1 + a_2)x^2 + (b_1 + b_2)x + (c_1 + c_2) \text{ and } \\ s(ax^2 + bx + c) = (sa)x^2 + (sb)x + (sc). \end{aligned}$
- The set of all degree at most n polynomials, with addition and scalar multiplication defined similarly. This vector space is denoted by \mathcal{P}_n .

Definition (Vector space)

Let V be a set (whose members are called $\emph{vectors}$) on which addition and scalar multiplication are defined. We say that V is a $\emph{vector space}$ when

- closure under addition) for each pair of vectors u and v in V we have that $u+v\in V$,
- (closure under scalar multiplication) for each vector $v \in V$ and each scalar $s \in \mathbb{R}$ we have that $sv \in V$,
- (commutativity of addition) for all $u, v \in V$ we have that u + v = v + u,

Definition (Vector space)

- associativity of addition) for all $u, v, w \in V$ we have that u + (v + w) = (u + v) + w,
- (zero vector) there is a vector $0 \in V$ such that for any $v \in V$ we have v + 0 = v,
- (additive inverse) for each $v \in V$ there is a vector $-v \in V$ such that v + (-v) = 0,
- (unit property) for each $v \in V$ we have 1v = v,
- associativity of scalar multiplication) for all $v \in V$ and all $r, s \in \mathbb{R}$ we have (rs)v = r(sv),

Definition (Vector space)

- (distributivity of scalar multiplication over vector addition) for all $u,v\in V$ and all $r\in \mathbb{R}$ we have that r(u+v)=ru+rv, and
- (distributivity of scalar multiplication over scalar addition) for all $v \in V$ and all $r, s \in \mathbb{R}$ we have that (r+s)v = rv + sv.

Show that

$$\{(x,y) \in \mathbb{R}^2 \mid (x,y) \cdot (3,-1) = 0\}$$

is closed under addition.