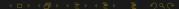
Math 2130 Linear Algebra Week 3 Gauss-Jordan reduction

Charlotte Aten

2025 September 10



Today's topics

Gauss-Jordan reduction

Gauss's method

- Small systems of linear equations may be solved by substitution, but this is difficult (or impossible) for larger systems.
- There are, however, three basic ways we can change our view of a system of linear equations which can help us find solutions:
 - Swap two equations.
 - 2 Add a nonzero multiple of one equation to another one.
 - Multiply an equation by a nonzero scalar.

Matrices and linear systems

Definition

A $m \times n$ matrix is said to be a row-echelon matrix when

- all rows consisting entirely of zeroes are at the bottom of the matrix,
- the first nonzero entry in any nonzero row is a 1 (called the leading 1), and
- 3 the leading 1 of any row below the first row is to the right of the leading 1 of the row above it.

Gauss-Jordan reduction

Definition

We say that a matrix (or linear system) is in *reduced echelon form* if each leading entry is a 1 and is the only nonzero entry in its column.

■ Each matrix is equivalent to a unique reduced echelon matrix.

Gauss-Jordan reduction

Definition

Given variables/numbers/matrices u_1, \ldots, u_n and scalars $c_1, \ldots, c_n \in \mathbb{R}$ we say that

$$c_1u_1+c_2u_2+\cdots+c_nu_n$$

is a *linear* combination of u_1, \ldots, u_n .

- Note that a linear combination of linear combinations is a linear combination.
- In an echelon form of a matrix, no nonzero row is a linear combination of the other nonzero rows.

