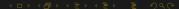
Math 2130 Linear Algebra Week 14 Eigenvectors and eigenvalues

Charlotte Aten

2025 December 1



Today's topics

- Recall our example of a homomorphism $f: \mathbb{R}^2 \to \mathbb{R}^2$ where f(x,y) = (x+y,2x+2y).
- For the basis $B = \{(1,0),(0,1)\}$ we have

$$[f]_B^B = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}.$$

■ For the basis $C = \{(1,2), (1,-1)\}$ we have that

$$[f]_C^C = \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix}.$$

- The vectors (1,2) and (1,-1) are called *eigenvectors* for f.
- Since

$$f(1,2) = (3,6) = 3(1,2)$$

we say that (1,2) is an eigenvector for f with eigenvalue 3.

Since

$$f(1,-1) = (0,0) = 0(1,-1)$$

we say that (1,-1) is an eigenvector for f with eigenvalue 0.

- The lines in \mathbb{R}^2 spanned by (1,2) and (1,-1) are the basic directions in which f stretches the plane.
- The corresponding eigenvalues measure the amount of stretching (or *scaling*) in that direction.

- Note that most vectors are not eigenvectors for f.
- For example, f(1,0) = (1,2) and (1,2) = k(1,0) is never true for any value of k.

Definition

Given a homomorphism $f \colon V \to V$, we say that $v \in V$ is an eigenvector for f with eigenvalue λ when $f(v) = \lambda v$ and $v \neq 0$.

- If $A \in \operatorname{Mat}_{n \times n}$ then we speak of eigenvectors and eigenvalues for $f_A : \mathbb{R}^n \to \mathbb{R}^n$ as eigenvectors and eigenvalues for A.
- This is just like how we can define the image or kernel of A as the image or kernel of the homomorphism f_A .

I'll show how to find the eigenvalues for

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}.$$

■ Note that if $Av = \lambda v$ then

$$Av = \lambda Iv$$

so

$$(\lambda I - A)v = 0.$$

- Thus, v is an eigenvector for A with eigenvalue λ exactly when $v \in \operatorname{Ker}(\lambda I A)$ (and $v \neq 0$).
- This means that $\lambda I A$ must have a nonzero kernel in order for λ to be an eigenvalue for A.
- Thus, the eigenvalues of A are those λ with

$$\det(\lambda I - A) = 0.$$

Definition

The characteristic polynomial of a matrix A is $\det(\lambda I - A)$.

■ We can define the characteristic polynomial of a homomorphism $f\colon V\to V$ to be the characteristic polynomial of $[f]_B^B$ where B is any basis for V. (They all give the same polynomial.)

- When f(x,y) = (x+y,2x+2y) we have that the characteristic polynomial of f is $\lambda^2 3\lambda$.
- The characteristic polynomial of

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$

is
$$\lambda^2 - 4\lambda + 3$$
.

- Our previous reasoning says that the eigenvalues of a homomorphism (or matrix) are the roots of its characteristic polynomial.
- This checks out for f(x,y)=(x+y,2x+2y) because we found eigenvectors with eigenvalues 3 and 0, which are the roots of $\lambda^2-3\lambda$.
- For the matrix A, we see that our eigenvalues are the roots of $\lambda^2 4\lambda + 3$, which are 3 and 1.

- \blacksquare Now we find the eigenvectors for A.
- Let $v = (v_1, v_2)$.
- Those vectors which satisfy Av = 3v have

$$v_1 + 2v_2 = 3v_1$$
$$3v_2 = 3v_2.$$

■ Solving the system, we see that $v_2 = v_1$, so the eigenvectors for A with eigenvalue 3 are those of the form (x,x) where $x \neq 0$.