Math 2130 Linear Algebra Week 11 The Rank-Nullity Theorem

Charlotte Aten

2025 November 5

Today's topics

- Bases for images and kernels
- The Rank-Nullity Theorem

Bases for images and kernels

■ If we have a homomorphism $f\colon V\to W$ and a basis $\{b_1,\ldots,b_n\}$ for V, we can find a basis for $\mathrm{Ker}(f)$ by solving for the values of c_1,\ldots,c_n that make

$$f(c_1b_1+\cdots+c_nb_n)=0.$$

■ We can find a basis for Im(f) by noting that $Im(f) = Span(\{f(b_1), \ldots, f(b_n)\}).$

Bases for images and kernels

- Let $f: V \to W$ be a homomorphism.
- Note that if $Ker(f) = \{0\}$ then f is injective, while if Ker(f) = V then f(v) = 0.
- \blacksquare Similarly, if $\mathrm{Im}(f)=W$ then f is surjective, while if $\mathrm{Im}(f)=\{0\}$ then f(v)=0.

Bases for images and kernels

- Consider the homomorphism $f: \mathbb{R}^2 \to \mathbb{R}^2$ given by f(x,y) = (x+y,2x+2y).
- A basis for Ker(f) is $\{(1,-1)\}$.
- A basis for Im(f) is $\{(1,2)\}$.

The Rank-Nullity Theorem

Theorem (The Rank-Nullity Theorem)

Given a homomorphism $f\colon V\to W$ where V is finite-dimensional we have that

$$\dim(\operatorname{Im}(f)) + \dim(\operatorname{Ker}(f)) = \dim(V).$$

■ We can also think about this as a statement about the rank of a matrix A by considering the homomorphism f_A given by $f_A(v) = Av$.

The Rank-Nullity Theorem

- Our previous example shows that, in general, a basis isn't split up into a basis for the kernel and vectors that map to a basis for the image.
- Neither (1,0) or (0,1) is in the kernel of f for that example, but $\operatorname{Ker}(f)$ is 1-dimensional.

The Rank-Nullity Theorem

- Let's consider a bigger example.
- Take $f: \mathbb{R}^4 \to \mathbb{R}^4$ to be given by

$$f(a, b, c, d) = (a+b+c, a-b-d, 2a+c-d, 3a+b+2c-d).$$

 $lue{}$ A basis for $\operatorname{Ker}(f)$ is

$$\left\{ \left(\frac{-1}{2},\frac{-1}{2},1,0\right), \left(\frac{1}{2},\frac{-1}{2},0,1\right) \right\}.$$

lacksquare A basis for $\mathrm{Im}(f)$ is

$$\{(1,1,2,3),(1,-1,0,1)\}.$$

