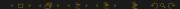
Math 2130 Linear Algebra Week 10 Homomorphisms

Charlotte Aten

2025 October 29



Today's topics

Homomorphisms

Definition

Given vector spaces V and W a function $T\colon V\to W$ is said to be a homomorphism when for all $v_1,v_2\in V$ and all scalars k we have that

- \blacksquare (additivity) $T(v_1+v_2)=T(v_1)+T(v_2)$ and
- (homogeneity) $T(kv_1) = kT(v_1)$.
- Isomorphisms are homomorphisms that are also bijections.
- Homomorphisms are also called *linear transformations* or linear maps.

Lemma

For any vector spaces V and W and any function $f: V \to W$ the following are equivalent:

- $f(v_1 + v_2) = f(v_1) + f(v_2)$ and f(cv) = cf(v)
- $(c_1v_1 + c_2v_2) = c_1f(v_1) + c_2f(v_2)$
- $f(c_1v_1 + \dots + c_nv_n) = c_1f(v_1) + \dots + c_nf(v_n)$
- We saw this before when we talked about dimension and isomorphisms.
- The conditions in the above lemma are all equivalent to f being a homomorphism, since condition (1) is the definition of being a homomorphism.

■ This tells us that if $f: \mathbb{R}^2 \to \mathbb{R}^3$ is homomorphism with f(1,0)=(1,3,5) and f(0,1)=(2,4,6) then we can compute

$$f(2,3) = f(2(1,0) + 3(0,1))$$

$$= 2f(1,0) + 3f(0,1)$$

$$= 2(1,3,5) + 3(2,4,6)$$

$$= (8,18,28).$$

- Every homomorphism $f: V \to W$ is determined by what it does to a basis for V.
- Let $\{b_1,\ldots,b_n\}$ be a basis for V and note that each vector $v\in V$ can be written uniquely as

$$v = c_1b_1 + c_2b_2 + \dots + c_nb_n$$

for some $c_1, c_2, \ldots, c_n \in \mathbb{R}$.

It follows that

$$f(v) = f(c_1b_1 + c_2b_2 + \dots + c_nb_n) = c_1f(b_1) + c_2f(b_2) + \dots + c_nf(b_n),$$

so knowing the $f(b_i)$ tells us how to compute f(v) for any $v \in V$.

- This also means that if $g: V \to W$ is another homomorphism and $g(b_i) = f(b_i)$ for each basis vector b_i then f = g.
- This is because

$$f(v) = c_1 f(b_1) + c_2 f(b_2) + \dots + c_n f(b_n)$$

= $c_1 g(b_1) + c_2 g(b_2) + \dots + c_n g(b_n)$
= $g(v)$,

so f and g are the same function.

- On the other hand, we can make a homomorphism $f \colon V \to W$ by choosing $f(b_i) \in W$ for each basis element b_i .
- Supposing that we are given these choices, we can define

$$f(v) = f(c_1b_1 + c_2b_2 + \dots + c_nb_n) = c_1f(b_1) + c_2f(b_2) + \dots + c_nf(b_n).$$

■ This only makes sense as a definition of a function because $\{b_1, b_2, \ldots, b_n\}$ is a basis, so every vector in V can be written as a unique linear combination of the b_i .

■ To see that f is actually a homomorphism, no matter what we choose for the values of $f(b_i)$, first observe that

$$f(v+u) = f((c_1b_1 + \dots + c_nb_n) + (d_1b_1 + \dots + d_nb_n))$$

$$= f((c_1 + d_1)b_1 + \dots + (c_n + d_n)b_n)$$

$$= (c_1 + d_1)f(b_1) + \dots + (c_n + d_n)f(b_n)$$

$$= (c_1f(b_1) + \dots + c_nf(b_n)) + (d_1f(b_1) + \dots + d_nf(b_n))$$

$$= f(v) + f(u).$$

■ The demonstration that f(sv) = sf(v) is similar.

- We can now describe all homomorphisms between finite-dimensional vector spaces.
- Since every n-dimensional vector space is isomorphic to \mathbb{R}^n , it suffices to describe homomorphisms from \mathbb{R}^n to \mathbb{R}^m .
- Claim: Every homomorphism $f: \mathbb{R}^n \to \mathbb{R}^m$ is of the form $f_A(v) = Av$ for some $A \in \operatorname{Mat}_{m \times n}$.

- Remember our example of $f: \mathbb{R}^2 \to \mathbb{R}^3$ with f(1,0) = (1,3,5) and f(0,1) = (2,4,6).
- We want a matrix $A \in \operatorname{Mat}_{3 \times 2}$ so that $f_A(v) = f(v)$.
- Make f(1,0) the first column of A and make f(0,1) the second column of A.
- We have that $f_A(v) = f(v)$ when $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$ since

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$$

and

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}.$$

