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Magmas

Definition (Magma)

A magma (or binar or, classically, groupoid) is an algebraic
structure (S , f ) consisting of an underlying set S and a single
binary operation f : S2 → S .



Operation Digraphs

Definition (Operation digraph)

Let f : S → S be a unary operation. The operation digraph (or
functional digraph) of f , written Gf , is given by Gf = G (S ,E )
where

E = {(s, f (s)) | s ∈ S}.

Definition (Operation digraph for a binary operation)

Let f : S2 → S be a binary operation and let s ∈ S . The left
operation digraph of s under f , written GL

fs , is the operation
digraph of f L

s : S → S where f L
s (x) := f (s, x) for x ∈ S . The right

operation digraph of s under f , written GR
fs , is defined analogously.



Example: Operation Digraphs from Z/3Z
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Previous Work in...

Semigroup theory

Dynamics and number theory

Cayley graphs

Graph theory

Universal algebra (unary algebras)



Operation Matrices

Definition (Adjacency matrix)

Let G (V ,E ) be a digraph, let |V | = n, and fix an order on the
vertex set V . The adjacency matrix A for G under the given order
on V is the n × n matrix whose ij-entry is 1 if there is an edge in
G from vi to vj and 0 otherwise.

We write AL
fs to indicate the adjacency matrix of GL

fs and similarly
write AR

fs to indicate the adjacency matrix of GR
fs .



Example: Operation Matrices from Z/3Z

A+0 =

1 0 0
0 1 0
0 0 1

 A+1 =

0 1 0
0 0 1
1 0 0

 A+2 =

0 0 1
1 0 0
0 1 0


A×0 =

1 0 0
1 0 0
1 0 0

 A×1 =

1 0 0
0 1 0
0 0 1

 A×2 =

1 0 0
0 0 1
0 1 0





Example: Operation Matrices from Z/3Z

Write si to indicate i viewed as an element of Z/3Z. Multiplying a
vector by the adjacency matrix of an operation digraph
corresponds to applying the corresponding function to the
corresponding element.

s2A+1 =
[
0 0 1

] 0 1 0
0 0 1
1 0 0

 =
[
1 0 0

]
= s0

s1A+2 =
[
0 1 0

] 0 0 1
1 0 0
0 1 0

 =
[
1 0 0

]
= s0



Graph Treks

Theorem

Let A be the adjacency matrix for G with a given vertex ordering.
Then (Ak)ij for k ∈ N is the number walks of length k from vi to
vj in G .

It is natural to consider the significance of the product of the
adjacency matrices of two or more different graphs on the same set
of vertices.



Graph Treks

Definition (Trek)

Let (G1,G2, . . . ,Gk) be a tuple of graphs on a common set of
vertices V . A trek (or (vi , vj)-trek) on (G1,G2, . . . ,Gk) is an
ordered list of vertices and edges vi , e1, . . . , ek , vj where et ∈ E (Gt)
is an edge joining the vertices before and after it in the list.

Theorem (A. 2015)

Let (G1,G2, . . . ,Gk) be a tuple of graphs on a set of vertices V
under a given vertex ordering and let A1,A2, . . . ,Ak be the
corresponding adjacency matrices. Then (A1A2 · · ·Ak)ij is the
number of treks on (G1,G2, . . . ,Gk) of length k from vi to vj .



Counting Solutions to Equations

Multiplying operation matrices corresponds to function
composition:

A×2A+1 =

1 0 0
0 0 1
0 1 0

0 1 0
0 0 1
1 0 0

 =

0 1 0
1 0 0
0 0 1


This also corresponds to looking at those treks which consist of a
step on G×2 followed by a step on G+1.



Counting Solutions to Equations

Theorem (A. 2015)

Let S be an ordered finite set of elements and let {fp}p∈P where
fp : S → S be an indexed collection of functions. Let
Gp = G (S ,Ep) be the operation digraph for fp and let Ap be the
adjacency matrix for Gp under the given ordering for S. If
Q = {qn}kn=1 is a finite sequence of k elements of P and y = sj is
a fixed element of S we have that the number of x ∈ S for which
f Q(x) = y is exactly

∑|S|
i=1

(∏k
n=1(Aqn)

)
ij

.



Counting Solutions to Equations

Theorem (Sylvester’s Rank Inequality)

Let U, V , and W be finite-dimensional vector spaces, let A be a
linear transformation from U to V and let B be a linear
transformation from V to W . Then
rank BA ≥ rank A + rank B − dim V .

By induction we see that for a finite collection of linear
transformations {Ai : V → V }i∈I we have
rank

∏
i∈I Ai ≥

(∑
i∈I rank Ai

)
− (|I | − 1) dim V .



Example: An Equation over Z/4Z

(
(3(x + 2))3

)((3(x+2))3)
= y

Let f1(x) = x + 2, f2(x) = 3x , f3(x) = x3, and f4(x) = xx . Note
that the equation under consideration can be rewritten as
f Q(x) = y , where Q is the sequence (1, 2, 3, 4).

A1 = A+2 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 A2 = A×3 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0



A3 = AR
∧3 =


1 0 0 0
0 1 0 0
1 0 0 0
0 0 0 1

 A4 = AR
↑2 =


0 1 0 0
0 1 0 0
1 0 0 0
0 0 0 1





Example: An Equation over Z/4Z

(
(3(x + 2))3

)((3(x+2))3)
= y

Since rank A+2 = rank A×3 = 4 and rank AR
∧3 = rank AR

↑2 = 3, we
have that

rank
4∏

n=1

An ≥

(
4∑

n=1

rank An

)
− (|I | − 1)|S |

= (4 + 4 + 3 + 3)− (4− 1)4

= 2.



Sylvester’s Inequality for Functions

Proposition (Sylvester’s inequality for functions)

Let X , Y , and Z be finite sets and let f : X → Y and g : Y → Z
be functions. Then

|(g ◦ f )(X )| ≥ |f (X )|+ |g(Y )| − |Y |.



Operation Hypergraphs

Definition (Operation hypergraph)

Let f : S2 → S be a binary operation. The operation hypergraph
of f , written Gf , is given by Gf = G (S ,E ) where

E = {(si , sj , f (si , sj)) | si , sj ∈ S}.



Adjacency Tensor

Definition (Adjacency tensor)

Let G (V ,E ) be a 3-uniform hypergraph, let |V | = n, and fix an
order on the vertex set V . The adjacency tensor A for G under the
given order on V is the n × n × n hypermatrix whose ijk-entry is 1
if (vi , vj , vk) is an edge in G and 0 otherwise.

Recall that given such a tensor we can obtain a bilinear map
Af : CS × CS → CS where given x1 = (ass)s∈S and x2 = (bss)s∈S
from RS we define

Af (x1, x2) :=
∑

si ,sj ,sk∈S
asi bsj (Af )ijksk =

∑
si ,sj∈S

asi bsj f (si , sj).



Hypergraph Odysseys

There are many ways to compose binary operations. Let
f , g : S2 → S .

(x , y , z) 7→ g(f (x , y), z)

(x , y , z) 7→ f (f (x , x), g(x , f (x , f (y , z)))).



Hypergraph Odysseys

We return to our 2x + 1 = y example.

2x

x2

2x+ 1

1



Hypergraph Odysseys

Definition (µ,Σ-odyssey)

Let X and Y be sets of variables and take Σ to be a collection of
pairs of the form (e,E ) where E = Ei for some i ∈ I and
e ∈ (X ] Y )ρ(i). If there exist evaluation maps µ : X → S (the
endpoint evaluation map) and ν : Y → S (the intermediate point
evaluation map) such that for each (e,E ) ∈ Σ we have that
(µ ◦ ν)(e) ∈ E then we say that the collection of edges
O = (µ ◦ ν)(e) is a Σ-odyssey on the Gi . We say that X is the set
of end variables, Y is the set of intermediate variables, µ(X ) is the
set of endpoints, ν(Y ) is the set of intermediate points, Σ is the
odyssey type, and |Σ| is the length of the odyssey. We call a
Σ-odyssey O a µ,Σ-odyssey if µ : X → S is the endpoint
evaluation map of O for some fixed µ.



Hypergraph Odysseys

t = ax

xa

y = ax+ b

b

End variables: X = {x , y , a, b}
Intermediate variable: Y = {t}
Odyssey type: Σ = {((a, x , t),G×), ((t, b, y),G+)}



Counting Solutions to Equations

Let ϕ denote the logical formula

ϕ(a, b, x , y) := (∃t ∈ Z/3Z)((a, x , t) ∈ G× ∧ (t, b, y) ∈ G+).

Let A and B be arbitrary rank 3 tensors over C. Define

(ϕAB)ijkl :=
∑

t∈{0,1,2}
AiktBtjl ,

which is the generalized matrix product of A and B corresponding
to the logical formula ϕ. By simple definition-chasing one finds
that ϕG×G+ is the adjacency tensor for the composite operation

(a, b, x) 7→ ax + b.



Embedding Dimension

Definition (Operation graph)

Let f : S → S be a unary operation. The operation graph of f ,
written Ḡf , is the simple graph G (V ,E ) which is constructed as
follows. For each edge e = (s, f (s)) in Gf define

σ(e) :=


{(s, ue), (ue , ve), (ve , s)} when f (s) = s

{(s, ue), (ue , f (s))} when f 2(s) = s and f (s) 6= s

{e} otherwise

where ue and ve are new vertices unique to the edge e. Take
E =

⋃
e∈E(Gf )

σ(e) and let V be the union of S and all the ue and
ve generated by applying σ to edges e ∈ E (Gf ).



Embedding Dimension

s = f(s)

σ

s = f(s)

ueve

s = f(f(s))

f(s)

σ

s = f(f(s))

f(s)

ue1ue2



Embedding Dimension

Theorem

Every operation graph is planar.

Theorem

Let H be a subdivision of a simple graph H ′ with n vertices, each
of degree at least k + 1 for k ≥ 2. The graph H cannot appear as
a subgraph of any operation graph if k > n−1

2 .



Embedding Dimension

Definition (Operation complex)

Let f : S2 → S be a binary operation. The operation complex of f ,
written Ḡf , is the simplicial complex whose 2-faces are the edges of the
hypergraph G (V ,E ), which is constructed as follows. Write (a, b, c , d)2
to indicate the set of all 2-faces of the simplex with vertices a, b, c , and
d . For each edge e = (si , sj , f (si , sj)) in Gf define

σ(e) :=



(si , ue , ve ,we)2 when |{si , sj , f (si , sj)}| = 1

(si , sj , ue , ve)2 when |{si , sj , f (si , sj)}| = 2

(si , sj , sk , ue)2 when |{si , sj , f (si , sj)}| = 3 and τe ∈ f for
some nonidentity permutation τ

{e} otherwise

where ue , ve , and we are new vertices unique to the edge e. Take
E =

⋃
e∈E(Gf )

σ(e) and let V be the union of S and all the ue , ve , and

we generated by applying σ to edges e ∈ E (Gf ).



Embedding Dimension

Given any magma (S , f ) we then know that Ḡf embeds into Rk

but not Rk−1 for some k ∈ {3, 4, 5}.

Definition (Embedding dimension)

Let (S , f ) be a magma with operation complex Ḡf . We refer to
the minimal k such that the complex Ḡf embeds into Rk as the
embedding dimension of the magma (S , f ).

The situation here is more complex than for unary operations.



Embedding Dimension

Let (S , f ) be a magma such that for every x , y ∈ S , x 6= y , we
have that either f (x , y) = x or f (x , y) = y . Every edge e ∈ Gf

then contains at most 2 vertices which belong to S . We can
embed Ḡf into R3 without self-intersections.
There are also magmas of embedding dimension 3 without this
property. Consider (Z3,+).



Embedding Dimension

Consider the triangulation Kh12 of the Klein bottle.

a b

cd
e

f

g h i

g h i g

f

e

g



Embedding Dimension

We orient faces to obtain a partial operation table.

a b c d e f g h i

a · c d e f g h i b
b · · · · · · · · ·
c · · · i b · · · ·
d · · · · i · · · ·
e · · · · · c b · ·
f · · · · · · i · c
g · · · · h · · · b
h · · · · · · · · e
i · · · · · · · · ·

This “forbidden substructure” cannot appear in any magma with
embedding dimension 3.



Embedding Dimension

If a magma has embedding dimension n then clearly every
submagma has embedding dimension at most n. How does
embedding dimension behave under taking products or
homomorphic images of magmas?

If the class “magmas of embedding dimension at most n” is
closed under taking homomorphic images, submagmas, and
products we would have an equational class (Birkhoff’s
Variety Theorem).



Spectrum Calculation

Theorem

Let f : S → S be a function on a set S of size n. Let m(j) denote
the number of j-cycles under f and let Zj denote the multiset
which consists of m(j) copies of each j th root of unity. The
nonzero part of the spectrum of Af is the multiset union

⋃
j Zj .
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