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Introduction

In the summer of 2017 I lived in a cave in Yosemite National
Park.
While there I wanted to explain to my friends that I study
abstract algebra.
I realized that rock-paper-scissors was a particularly simple
way to do that.
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Introduction

We will view the game of RPS as a magma A := (A, f). We let
A := {r, p, s} and define a binary operation f:A2 → A where f(x, y)
is the winning item among {x, y}.

r p s
r r p r
p p p s
s r s s
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Introduction

I also realized that I wanted to be able to play with many of
my friends at the same time.
Naturally, this led me to study the varieties generated by
hypertournament algebras.
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Properties of RPS

The game RPS is
1 conservative,
2 essentially polyadic,
3 strongly fair, and
4 nondegenerate.

These are the properties we want for a multiplayer game, as well.
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What does a multiplayer game mean?

Suppose we have an n-ary magma A := (A, f) where
f:An → A.
The selection game for A has n players, p1, p2, . . . , pn.
Each player pi simultaneously chooses an item ai ∈ A.
The winners of the game are all players who chose
f(a1, . . . , an).
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Properties of RPS: Conservativity

We say that an operation f:An → A is conservative when for
any a1, . . . , an ∈ A we have that f(a1, . . . , an) ∈ {a1, . . . , an}.
We say that A is conservative when each round has at least
one winning player.
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Properties of RPS: Essential Polyadicity

We say that an operation f:An → A is essentially polyadic
when there exists some g: Sb(A) → A such that for any
a1, . . . , an ∈ A we have f(a1, . . . , an) = g({a1, . . . , an}).
We say that A is essentially polyadic when a round’s winning
item is determined solely by which items were played, not
taking into account which player played which item or how
many players chose a particular item (as long at it was chosen
at least once).
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Properties of RPS: Strong Fairness

Let Ak denote the members of An which have k distinct
components for some k ∈ N.
We say that f is strongly fair when for all a, b ∈ A and all
k ∈ N we have

∣∣f−1(a) ∩ Ak
∣∣ = ∣∣f−1(b) ∩ Ak

∣∣.
We say that A is strongly fair when each item has the same
chance of being the winning item when exactly k distinct
items are chosen for any k ∈ N.
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Properties of RPS: Nondegeneracy

We say that f is nondegenerate when |A| > n.
In the case that |A| ≤ n we have that all members of A|A|
have the same set of components.
If A is essentially polyadic with |A| ≤ n it is impossible for A
to be strongly fair unless |A| = 1.
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Variants with More Items

The French version of RPS adds one more item: the well. This
game is not strongly fair but is conservative and essentially
polyadic.

r p s w
r r p r w
p p p s p
s r s s w

w w p w w
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Variants with More Items

The recent variant Rock-Paper-Scissors-Spock-Lizard is
conservative, essentially polyadic, strongly fair, and nondegenerate.

r p s v l
r r p r v r
p p p s p l
s r s s v s
v v p v v l
l r l s l l
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Result for Two-Player Games

The only “valid” RPS variants for two players use an odd number
of items.
Proposition
Let A be a selection game with n = 2 which is essentially polyadic,
strongly fair, and nondegenerate and let m := |A|. We have that
m ̸= 1 is odd. Conversely, for each odd m ̸= 1 there exists such a
selection game.

Proof.
We need m |

(m
2
)
.
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PRPS Magmas

Definition (PRPS magma)
Let A := (A, f) be an n-ary magma. When A is essentially
polyadic, strongly fair, and nondegenerate we say that A is a PRPS
magma (read “pseudo-RPS magma”). When A is an n-magma of
order m ∈ N with these properties we say that A is a PRPS(m, n)
magma. We also use PRPS and PRPS(m, n) to indicate the
classes of such magmas.
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Result for Multiplayer Games

Theorem
Let A ∈ PRPS(m, n) and let ϖ(m) denote the least prime dividing
m. We have that n < ϖ(m). Conversely, for each pair (m, n) with
m ̸= 1 such that n < ϖ(m) there exists such a magma.

Proof.
We need m | gcd

({(m
2
)
, . . . ,

(m
n
)})

.
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RPS Magmas

Definition (RPS magma)
Let A := (A, f) be an n-ary magma. When A is conservative,
essentially polyadic, strongly fair, and nondegenerate we say that A
is an RPS magma. When A is an n-magma of order m with these
properties we say that A is an RPS(m, n) magma. We also use
RPS and RPS(m, n) to indicate the classes of such magmas.
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How do I get more RPS magmas?

In the space below I will show you how to manufacture more
of these magmas by hand.
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α-action Magmas

Definition (α-action magma)
Fix a group G, a set A, and some n < |A|. Given a regular group
action α:G → Perm(A) such that each of the k-extensions of α is
free for 1 ≤ k ≤ n let Ψk :=

{
Orb(U)

∣∣∣ U ∈
(A

k
)}

where Orb(U) is
the orbit of U under αk. Let β := {βk}1≤k≤n be a sequence of
choice functions βk: Ψk →

(A
k
)

such that βk(ψ) ∈ ψ for each
ψ ∈ Ψk. Let γ := {γk}1≤k≤n be a sequence of functions
γk: Ψk → A such that γk(ψ) ∈ βk(ψ) for each ψ ∈ Ψk. Let
g: Sb≤n(A) → A be given by g(U) := (α(s))(γk(ψ)) when
U = (αk(s))(βk(ψ)). Define f:An → A by
f(a1, . . . , an) := g({a1, . . . , an}). The α-action magma induced by
(β, γ) is A := (A, f).
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α-action Magmas are RPS Magmas

Theorem
Let A be an α-action magma induced by (β, γ). We have that
A ∈ RPS.

Definition (Regular RPS magma)
Let G be a nontrivial finite group and fix n < ϖ(|G|). We denote
by Gn(β, γ) the L-action n-magma induced by (β, γ), which we
refer to as a regular RPS magma.
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A Game for Three Players

0 0 1 2 3 4
0 0 1 0 3 0
1 1 1 0 0 4
2 0 0 0 2 4
3 3 0 2 3 3
4 0 4 4 3 0

1 0 1 2 3 4
0 1 1 0 0 4
1 1 1 2 1 4
2 0 2 2 1 1
3 0 1 1 1 3
4 4 4 1 3 4

2 0 1 2 3 4
0 0 0 0 2 4
1 0 2 2 1 1
2 0 2 2 3 2
3 2 1 3 3 2
4 4 1 2 2 2

3 0 1 2 3 4
0 3 0 2 3 3
1 0 1 1 1 3
2 2 1 3 3 2
3 3 1 3 3 4
4 3 3 2 4 4

4 0 1 2 3 4
0 0 4 4 3 0
1 4 4 1 3 4
2 4 1 2 2 2
3 3 3 2 4 4
4 0 4 2 4 4
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Hypergraphs

Definition (Pointed hypergraph)
A pointed hypergraph S := (S, σ, g) consists of a hypergraph (S, σ)
and a map g:σ → S such that for each edge e ∈ σ we have that
g(e) ∈ e. The map g is called a pointing of (S, σ).

Definition (n-complete hypergraph)
Given a set S we denote by Sn the n-complete hypergraph whose
vertex set is S and whose edge set is

∪n
k=1

(S
k
)
.
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Hypertournaments

Definition (Hypertournament)
An n-hypertournament is a pointed hypergraph T := (T, τ, g)
where (T, τ) = Sn for some set S.

U 0 1 2 01 12 23 34 40 02 13 24 30 41
g(U) 0 1 2 1 2 3 4 0 0 1 2 3 4

U 012 123 234 340 401 013 124 230 341 402
g(U) 0 1 2 3 4 0 1 2 3 4

RPS(5, 3) example
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Hypertournament Magmas

Definition (Hypertournament magma)
Given an n-hypertournament T := (T, τ, g) the hypertournament
magma obtained from T is the n-magma A := (T, f) where for
u1, . . . , un ∈ T we define

f(u1, . . . , un) := g({u1, . . . , un}).

Definition (Hypertournament magma)
A hypertournament magma is an n-magma which is conservative
and essentially polyadic.
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Tournaments

Tournaments are the n = 2 case of a hypertournament.
Hedrlín and Chvátal introduced the n = 2 case of a
hypertournament magma in 1965.
There has been a lot of work on varieties generated by
tournament magmas. See for example the survey by
Crvenković et al. (1999).
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Class Containment Relationships

Proposition
Let n > 1. We have that RPSn ⊊ PRPSn, RPSn ⊊ Tourn, and
neither of PRPSn and Tourn contains the other. Moreover,
RPSn = PRPSn ∩Tourn.
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A Generation Result

We denote by Tn the variety of algebras generated by Tourn.
This is equivalent to having

Tn = HSP(Tourn) = Mod(Id(Tourn)).

Similarly, we define Rn to be the variety of algebras generated
by RPSn.
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A Generation Result

Theorem
Let n > 1. We have that Tn = Rn. Moreover Tn is generated by
the class of finite regular RPSn magmas.

Proof.
Every finite hypertournament can be embedded in a finite regular
balanced hypertournament.
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Thank you.


