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Some history

A 1935 paper of Garrett Birkhoff was the starting point for a
new discipline within algebra, called either «universal algebra»
or «general algebra», which deals with those properties
common to all algebraic structures, such as groups, rings,
Boolean algebras, Lie algebras, and lattices.
Birkhoff used lattice-theoretic ideas in his paper. In 1940 he
published a book on lattice theory.
Øystein Ore referred to lattices as «structures» and led a
short-lived program during the 1930s where lattices were
hailed as the single unifying concept for all of mathematics.
During this period Saunders Mac Lane studied algebra under
Ore’s advisement. Mac Lane went on to become one of the
founders of category theory and coauthored an influential
algebra textbook with Birkhoff.
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Some history

Over the next few decades universal algebra and algebraic
topology grew into decidedly separate disciplines.
By the 1960s Bill Lawvere was a student of Samuel Eilenberg.
Although most of Eilenberg’s students were algebraic
topologists, Lawvere wrote a thesis on universal algebra.
Eilenberg famously did not even read Lawvere’s thesis before
Lawvere was awarded his Ph.D.
However, Eilenberg did finally read it in preparation for his
lectures on «Universal algebra and the theory of automata» at
the 1967 AMS summer meeting in Toronto.
This talk is on the category theoretic treatment of universal
algebra, which was the topic of Lawvere’s thesis.
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Talk outline

Algebras in universal algebra
Clones
Equational theories
Algebraic theories
Monads and algebraic theories
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Algebras in universal algebra

Operations are rules for combining elements of a set together to
obtain another element of the same set.
Definition (Operation, arity)
Given a set A and some n ∈ W we refer to a function f:An → A as
an n-ary operation on A. When f is an n-ary operation on A we say
that f has arity n.
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Algebras in universal algebra

Algebras are sets with an indexed sequence of operations.

Definition (Algebra)
An algebra (A,F) consists of a set A and a sequence F = {fi}i∈I of
operations on A, indexed by some set I.
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Algebras in universal algebra

Given an algebra A := (A, {fi}i∈I) we define a map ρ: I → W
where ρ(i) := n when fi:An → A is an n-ary operation on A.
This map ρ: I → W is called the similarity type of A.
When two algebras A := (A,F) and B := (B,G) have the
same similarity type ρ: I → W we say that A and B are similar
algebras.
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Algebras in universal algebra

Definition (Homomorphism)
Given algebras A := (A,F) and B := (B,G) of the same similarity
type ρ: I → W we say that a function h:A → B is a homomorphism
from A to B when for each i ∈ I and all a1, . . . , aρ(i) ∈ A we have
that

h(fi(a1, . . . , aρ(i))) = gi(h(a1), . . . , h(aρ(i))).
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Algebras in universal algebra

The class Algρ of all algebras of signature ρ can be taken as
the objects of a category Algρ whose morphisms are algebra
homomorphisms.
The category Algρ has some particularly well-behaved full
subcategories: We say that a class of algebras K ⊂ Algρ is a
variety when K is closed under taking homomorphic images,
subalgebras, and products.
Examples of varieties include (abelian/quasi/semi) groups,
(unital/commutative/Lie) rings, and
(semi/distributive/modular) lattices.
Fields do not form a variety.
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Clones

We will need to keep track of all functions which can be built
using the basic operations of an algebra.
Given n ∈ W and a set A we define Opn(A) := A(An).
Given n, k ∈ W, f ∈ Opn(A), and g1, . . . , gn ∈ Opk(A) the
generalized composite

f[g1, . . . , gn]:Ak → A

is given by

f[g1, . . . , gn](x1, . . . , xk) := f(g1(x), . . . , gn(x)).

Note that Opn(A) contains all the coordinate projections pn
k

where
pn

k(x1, . . . , xn) := xk.
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Clones

Definition (Clone)
Given a nonempty set A we say that C ⊂ Op(A) :=

∪
n∈WOpn(A)

is a clone when C is closed under generalized composition and
contains all the coordinate projection operations.

The largest clone on A is Op(A) itself.
The smallest clone on A is Proj(A) := { pn

k | 1 ≤ k ≤ n ∈ W }.
Clones are examples of operads whose operation spaces are
discrete.
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Clones

Definition (Term)
Given a similarity type ρ: I → W, a set of variables X, and a set
F := {fi}i∈I which we think of as abstract basic operation symbols,
a term in the language of ρ in the variables X is an element of the
set Tρ(X) :=

∪
n∈W Tn where

T0 := X ∪ { fi | ρ(i) = 0 }

and for n ∈ W we set

Tn+1 := Tn ∪ { fi[t1, . . . , tk] | i ∈ I, k = ρ(i), and t1, . . . , tk ∈ Tn } .
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Clones

That is, Tρ(X) consists of all valid formal composites of the
basic operation symbols {fi}i∈I whose arities are given by ρ
with variable arguments coming from the set X.
Given an algebra A of signature ρ and a term
t(x1, . . . , xn) ∈ Tρ({x1, . . . , xn}) we define the term operation

tA:An → A

by interpreting all the operation symbols appearing in t as
actual basic operations of A in the obvious way.
For example, if ρ is the usual signature for groups then
(xy)(x−1y−1) is a term in the variables {x, y} whereas there
exists an actual commutator term operation on the symmetric
group S3 which is a binary operation on S3.
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Clones

Each algebra A has a corresponding clone of term operations,
which is

Clo(A) :=
∪

n∈W
Clon(A)

where

Clon(A) :=
{

tA
∣∣∣ t ∈ Tρ({x1, . . . , xn})

}
.

This is to say that Clo(A) consists of all the operations on A
which can be built up using the basic operations of A and
(implicitly) projections.
Another way of saying this is that Clo(A) is the smallest clone
in the lattice of clones on A which contains the basic
operations of A.
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Equational theories

Definition (Identity)
To each ordered pair (t1, t2) ∈ Tρ({x1, . . . , xn}) we associate a
proposition, called an identity in the language of ρ, which is

(∀x1, . . . , xn)(t1(x1, . . . , xn) = t2(x1, . . . , xn)).

We usually write

t1(x1, . . . , xn) ≈ t2(x1, . . . , xn)

or even t1 ≈ t2 instead.

Given a ρ-algebra A and an identity ϵ we say that A models
ϵ = t1 ≈ t2 and write A |= ϵ when

(∀x1, . . . , xn ∈ A)(tA
1 (x1, . . . , xn) = tA

2 (x1, . . . , xn)).
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Equational theories

Definition (Equational theory)
Given a class K of algebras of signature ρ we say refer to a set of
equations of the form

Id(K) := { ϵ | (∀A ∈ K)(A |= ϵ) }

as an equational theory.

For example, when K is the class of all groups we have that
Id(K) contains identities like (xy)z−1 ≈ x(yz−1) and
x(ex−1) ≈ e but does not contain xy ≈ yx or x(xx) ≈ x.
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Equational theories

Definition (Equational class)
We say that a class K of ρ-algebras is equational when there exists
a set of identities Σ ⊂ (Tρ(X))2 such that

K = Mod(Σ) := {A | A |= Σ } .

All of the varieties that we have mentioned are equational
classes by definition.
It is trivial to see that any equational class is a variety.
The converse is not trivial to prove, but it is true.

Theorem (Birkhoff)
A class of ρ-algebras is equational if and only if it is a variety.
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Equational theories

Recall that any variety of algebras V is a full subcategory of
Algρ.
There is a forgetful functor U:V → Set given by U(A,F) := A.
This functor has a left adjoint H:Set → V which assigns to a
set X the free algebra H(X) on generators X in the variety V.
This free algebra functor can be constructed quite explicitly.
We can take

H(X) := Tρ(X)/θV
where θV is the congruence obtained by identifying terms t1
and t2 when V |= t1 ≈ t2.
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Algebraic theories

Definition (Algebraic theory)
An algebraic theory is a small category T with finite products.

Definition (Algebra of an algebraic theory)
Given an algebraic theory T an algebra of T is a functor
A: T → Set which preserves finite products.

Definition (Category of algebras of an algebraic theory)
Given an algebraic theory T we define Alg(T ) to be the full
subcategory of SetT whose objects are algebras of T .
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Algebraic theories

Definition (Algebraic category)
We refer to a category which is equivalent to Alg(T ) as an
algebraic category.

One example of an algebraic category is Set.
We can take Set ∼= Alg(W) where W is the full subcategory
of Setop whose objects are the sets [n] := {0, 1, . . . , n − 1} for
n ∈ W.
Note that if A:W → Set is an algebra of W then

A[n] = A([1]× · · · × [1]) = A[1]× · · · × A[1]

so A is determined by A[1].
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Algebraic theories

Definition (Algebraic category)
We refer to a category which is equivalent to Alg(T ) as an
algebraic category.

The functor A is determined by A := A[1].
A morphism [n] → [1] in Setop is a function from [1] → [n].
Given a morphism f: [n] → [1] in Setop we have

Af:An → A.

We have that Projn(A) = {Af | f: [n] → [1] in Setop }.
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Algebraic theories

For a different example of an algebraic category we can take
Grp, the category of groups.
In this case we have Grp ∼= Alg(G) where G has the sets [n]
for n ∈ W as objects and we define

G([n], [1]) := H({x1, . . . , xn})

where H:Set → Grp is the free group functor.
A functor A:G → Set selects an object A[1] (the set of
elements of the group A) for which we have that

Clon(A) = {Af | f: [n] → [1] in G } .
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Monads and algebraic theories

Definition (Monoid object)
A monoid (M,m, e) in a category C is an object M along with
morphisms m:M2 → M and e: 1 → M such that m is an associative
operation with unit e, in the sense that the diagrams below
commute.

M × M × M M × M

M × M M
idM ×M

m×idM

m
m

M

M = 1 × M M × M M × 1 = M

idM

e×idM

m

idM ×e

idM
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Monads and algebraic theories

Definition (Monad)
A monad M := (M, µ, η) on a category C is an endofunctor
M:C → C along with natural transformations µ:MM → M and
η: idC → M such that µ is an associative operation with unit η, in
the sense that the diagrams below commute.

MMM MM

MM M
Mµ

µM

µ

µ

M

M MM M

M

ηM

µ

Mη

M
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Monads and algebraic theories

Any variety of algebras V can be viewed as an algebraic theory
analogous to the example with groups which we gave before.
Let M:Set → Set denote the monad induced by the
free-forgetful adjunction for V. That is, take M = UH.
We can thus obtain from any variety of algebras both an
algebraic theory and a monad.
It is possible to define equations and equational categories
(analogues of equational classes in universal algebra) for
algebraic theories.
It turns out that equational categories are up to concrete
isomorphism precisely the categories SetM of Eilenberg-Moore
algebras for finitary monads M on Set.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

References

J. Adámek, J. Rosický, and E. M. Vitale. Algebraic Theories:
A Categorical Introduction to General Algebra. Vol. 184.
Cambridge Tracts in Mathematics. The Edinburgh Building,
Cambridge CB2 8RU, UK: Cambridge University Press, 2011.
isbn: 978-0-521-11922-1
Clifford Bergman. Universal Algebra: Fundamentals and
Selected Topics. Chapman and Hall/CRC, 2011. isbn:
978-1-4398-5129-6
Martin Hyland and John Power. “The Category Theoretic
Understanding of Universal Algebra: Lawvere Theories and
Monads”. In: Electronic Notes in Theoretical Computer
Science 172 (2007), pp. 437–458


