A High School Algebra Problem

Charlotte Aten

University of Rochester

2020

(ロ)、(型)、(E)、(E)、 E) の(()

- We denote by \mathbb{N} the set of *natural numbers* $\mathbb{N} := \{1, 2, 3, \dots\}$.
- We can add + multiply · pairs of natural numbers to obtain other natural numbers. We also often use the natural number 1 as a constant.
- The set N together with +, ⋅, and 1 forms the algebra N of the restricted naturals N := (N, +, ⋅, 1).

Operations

- We denote by \mathbb{W} the set of *whole numbers* $\mathbb{W} \coloneqq \{0, 1, 2, \dots\}$.
- Given a set A and some $n \in \mathbb{W}$ we call a function $f: A^n \to A$ an operation and say that f is *n*-ary.
- We think of f as a «multiplication» on A, with the «product» of $a_1, a_2, \ldots, a_n \in A$ (in that order) being $f(a_1, a_2, \ldots, a_n)$.
- For example, + and · on N are 2-ary (or *binary*) operations, while 1 can be viewed as a 0-ary (or *nullary*) operation on N.

- An algebra A := (A, f₁, f₂,..., f_k) consists of a set A and a sequence of operations on A.
- The algebra of restricted naturals N := (N, +, ·, 1) is indeed an algebra according to our definition.

- When f_i is n_i -ary for each $1 \le i \le k$ we say that **A** has signature (n_1, n_2, \ldots, n_k) .
- We see that $\widehat{\mathbf{N}}$ has signature (2, 2, 0).

Identities

- Given a signature (n_1, n_2, \ldots, n_k) and operation symbols f_1, f_2, \ldots, f_k an *identity* for n_1, n_2, \ldots, n_k is a pair of expressions involving the operation symbols and some variables.
- The pair $(x + (y \cdot x), (y + 1) \cdot x)$ is an identity in the signature of \widehat{N} . We usually write $x + (y \cdot x) \approx (y + 1) \cdot x$ instead.
- We say that $\mathbf{A} \models \epsilon$ when ϵ is an identity which is true for all assignments of the variables in ϵ .
- We have

$$\widehat{\mathbf{N}} \models x + (y \cdot x) \approx (y + 1) \cdot x$$

but

$$\widehat{\mathbf{N}} \not\models x + y \approx (x \cdot y) + 1.$$

There are six basic identities which are modeled by $\widehat{\mathbf{N}}$. We call this collection of identities the *restricted high school identities* $\widehat{\mathrm{HSI}}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

1
$$x + y \approx y + x$$

2 $x + (y + z) \approx (x + y) + z$
3 $x \cdot 1 \approx x$
4 $x \cdot y \approx y \cdot x$
5 $x \cdot (y \cdot z) \approx (x \cdot y) \cdot z$
6 $x \cdot (y + z) \approx (x \cdot y) + (x \cdot z)$

- \blacksquare Using $\widehat{\mathrm{HSI}}$ we can convert any expression in the signature of \widehat{N} into a polynomial.
- For example, $(x \cdot (y + (x + 1))) + x$ yields $xy + x^2 + 2x$.
- An identity $\alpha \approx \beta$ is true in $\widehat{\mathbf{N}}$ exactly when the polynomials for α and β are the same.
- This means that there is an algorithm for checking whether an identity holds in \widehat{N} and that $\widehat{\mathrm{HSI}}$ can be used to derive any true identity of \widehat{N} .

Exponentiation

■ We can also exponentiate ↑ pairs of natural numbers to obtain other natural numbers.

- Including \uparrow we have the algebra **N** of the *naturals* $\mathbf{N} := (\mathbb{N}, +, \cdot, \uparrow, 1).$
- The signature of N is (2, 2, 2, 0).

In 1888 Richard Dedekind gave a list of basic identities which are modeled by **N**. They consist of $\widehat{\mathrm{HSI}}$ as well as the following five identities involving exponentiation. We call this collection of identities the *high school identities* HSI.

 $1^{x} \approx 1$ $x^{1} \approx x$ $x^{y+z} \approx x^{y} \cdot x^{z}$ $(x \cdot y)^{z} \approx x^{z} \cdot y^{z}$ $(x^{y})^{z} \approx x^{y \cdot z}$

- Since $\widehat{\mathrm{HSI}}$ can be used to derive every true identity in \widehat{N} it is natural to ask whether every true identity in N follows from HSI.
- This is the question that Alfred Tarski asked in the 1960s, which we call Tarski's High School Algebra Problem.
- This is equivalent to knowing whether there exist *exotic identities*, identities ϵ for which $\mathbf{N} \models \epsilon$ but which cannot be proven using HSI.

Wilkie's Exotic Identity

- It turns out that exotic identities exist.
- In the early 1980s Alex Wilkie produced the first example of an exotic identity for N, solving Tarski's High School Algebra Problem.
- This Wilkie identity W(x, y) is

$$((1+x)^{y} + (1+x+x^{2})^{y})^{x} \cdot ((1+x^{3})^{x} + (1+x^{2}+x^{4})^{x})^{y} \\ \approx ((1+x)^{x} + (1+x+x^{2})^{x})^{y} \cdot ((1+x^{3})^{y} + (1+x^{2}+x^{4})^{y})^{x}.$$

- The proof that N ⊨ W(x, y) uses analysis on the corresponding functions on the real numbers ℝ.
- Wilkie's proof that HSI does not imply W(x, y) was somewhat abstract, but in 1985 Gurevič gave a more concrete proof.
- Imagine we had an algebra A such that A ⊨ HSI. If
 A ⊭ W(x, y) then we can't have that HSI implies W(x, y), for otherwise we would be able to prove W(x, y) for A.
- Gurevič found such an algebra **A** with |A| = 59.

We give an algebra $\mathbf{A} := (A, +, \cdot, \uparrow, 1)$ with |A| = 12 which was found in 2001 by Burris and Yeats.

A Small Counterexample to Tarski's Problem

+	1	2	3	4	a	b	c	d	e	f	g	h
1	2	3	4	4	2	3	d	3	3	3	3	4
2	3	4	4	4	3	4	3	4	4	4	4	4
3	4	4	4	4	4	4	4	4	4	4	4	4
4	4	4	4	4	4	4	4	4	4	4	4	4
a	2	3	4	4	b	4	b	3	h	3	3	4
b	3	4	4	4	4	4	4	4	4	4	4	4
c	d	3	4	4	b	4	b	3	3	3	3	4
d	3	4	4	4	3	4	3	4	4	4	4	4
e	3	4	4	4	h	4	3	4	4	3	h	4
f	3	4	4	4	3	4	3	4	3	4	3	4
g	3	4	4	4	3	4	3	4	h	3	4	4
h	4	4	4	4	4	4	4	4	4	4	4	4
									< □ →	< 🗗 ►	< ≣ >	◆臣≯

A Small Counterexample to Tarski's Problem

×	1	2	3	4	a	b	c	d	e	f	g	h
1	1	2	3	4	a	b	c	d	e	f	g	h
2	2	4	4	4	b	4	b	4	4	4	4	4
3	3	4	4	4	4	4	4	4	4	4	4	4
4	4	4	4	4	4	4	4	4	4	4	4	4
a	a	b	4	4	c	b	c	b	h	4	4	4
b	b	4	4	4	b	4	b	4	4	4	4	4
c	c	b	4	4	c	b	c	b	4	4	4	4
d	d	4	4	4	b	4	b	4	4	4	4	4
e	e	4	4	4	h	4	4	4	4	4	h	4
f	f	4	4	4	4	4	4	4	4	4	4	4
g	g	4	4	4	4	4	4	4	h	4	4	4
h	h	4	4	4	4	4	4	4	4	4	4	4

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A Small Counterexample to Tarski's Problem

Î	1	2	3	4	a	b	c	d	e	f	g	h
1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	4	4	4	4	4	4	4	f	4	4	4
3	3	4	4	4	e	4	4	4	g	4	e	h
4	4	4	4	4	4	4	4	4	4	4	4	4
a	a	c	c	c	c	c	c	c	c	c	c	c
b	b	4	4	4	4	4	4	4	4	4	4	4
c	c	c	c	c	c	c	c	c	c	c	c	c
d	d	4	4	4	f	4	4	4	4	4	4	4
e	e	4	4	4	4	4	4	4	h	4	4	4
f	f	4	4	4	4	4	4	4	4	4	4	4
g	g	4	4	4	h	4	4	4	4	4	h	4
h	h	4	4	4	4	4	4	4	4	4	4	4

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- One might wonder whether adding W(x, y) to HSI would make a new list of identities from which every true identity in N can be proven.
- This is not the case.
- In 1990 Gurevič showed that there cannot be any finite list of such identities.

References

- Clifford Bergman. Universal Algebra: Fundamentals and Selected Topics. Chapman and Hall/CRC, 2011. ISBN: 978-1-4398-5129-6.
- Stanley N. Burris and Karen A. Yeats. The Saga of the High School Identities. 2004.
- Joseph A. Gallian. Contemporary Abstract Algebra. 9th ed. 20 Channel Center Street, Boston, MA 02210, USA: Cengage Learning, 2017. ISBN: 978-1-305-65796-0.
- Serge Lang. *Algebra*. 3rd ed. Graduate Texts in Mathematics 211. Springer, 2005. ISBN: 038795385X,9780387953854.

Thank you.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?