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Introduction

In the summer of 2017 I lived in a cave in Yosemite National
Park.
While there I wanted to explain to my friends that I study
universal algebra.
I realized that rock-paper-scissors was a particularly simple
way to do that.
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Introduction

We will view the game of RPS as a magma A := (A, f). We let
A := {r, p, s} and define a binary operation f:A2 → A where f(x, y)
is the winning item among {x, y}.

r p s
r r p r
p p p s
s r s s
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Introduction

I also realized that I wanted to be able to play with many of
my friends at the same time.
This led me to study hypertournaments and hypertournament
algebras.
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Talk outline

Definition of RPS and PRPS magmas
A numerical constraint relating arity and order
Regular RPS magmas
Hypertournaments
An embedding result
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Properties of RPS

The game RPS is
1 conservative,
2 essentially polyadic,
3 strongly fair, and
4 nondegenerate.

These are the properties we want for a multiplayer game, as well.
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What does a multiplayer game mean?

Suppose we have an n-ary magma A := (A, f) where
f:An → A.
The selection game for A has n players, p1, p2, . . . , pn.
Each player pi simultaneously chooses an item ai ∈ A.
The winners of the game are all players who chose
f(a1, . . . , an).
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Properties of RPS: conservativity

We say that an operation f:An → A is conservative when for
any a1, . . . , an ∈ A we have that f(a1, . . . , an) ∈ {a1, . . . , an}.
We say that A is conservative when each round has at least
one winning player.
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Properties of RPS: essential polyadicity

We say that an operation f:An → A is essentially polyadic
when there exists some g: Sb(A) → A such that for any
a1, . . . , an ∈ A we have f(a1, . . . , an) = g({a1, . . . , an}).
We say that A is essentially polyadic when a round’s winning
item is determined solely by which items were played, not
taking into account which player played which item or how
many players chose a particular item (as long at it was chosen
at least once).
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Properties of RPS: strong fairness

Let Ak denote the members of An which have k distinct
components for some k ∈ N.
We say that f is strongly fair when for all a, b ∈ A and all
k ∈ N we have

∣∣f−1(a) ∩ Ak
∣∣ = ∣∣f−1(b) ∩ Ak

∣∣.
We say that A is strongly fair when each item has the same
chance of being the winning item when exactly k distinct
items are chosen for any k ∈ N.
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Properties of RPS: nondegeneracy

We say that f is nondegenerate when |A| > n.
In the case that |A| ≤ n we have that all members of A|A|
have the same set of components.
If A is essentially polyadic with |A| ≤ n it is impossible for A
to be strongly fair unless |A| = 1.
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Variants with more items

The French version of RPS adds one more item: the well. This
game is not strongly fair but is conservative and essentially
polyadic.

r p s w
r r p r w
p p p s p
s r s s w

w w p w w
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Variants with more items

The recent variant Rock-Paper-Scissors-Spock-Lizard is
conservative, essentially polyadic, strongly fair, and nondegenerate.

r p s v l
r r p r v r
p p p s p l
s r s s v s
v v p v v l
l r l s l l
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Result for two-player games

The only “valid” RPS variants for two players use an odd number
of items.
Proposition
Let A be a selection game with n = 2 which is essentially polyadic,
strongly fair, and nondegenerate and let m := |A|. We have that
m ̸= 1 is odd. Conversely, for each odd m ̸= 1 there exists such a
selection game.

Proof.
We need m |

(m
2
)
.
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PRPS magmas

Definition (PRPS magma)
Let A := (A, f) be an n-ary magma. When A is essentially
polyadic, strongly fair, and nondegenerate we say that A is a PRPS
magma (read “pseudo-RPS magma”). When A is an n-magma of
order m ∈ N with these properties we say that A is a PRPS(m, n)
magma. We also use PRPS and PRPS(m, n) to indicate the
classes of such magmas.
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Result for multiplayer games

Theorem
Let A ∈ PRPS(m, n) and let ϖ(m) denote the least prime dividing
m. We have that n < ϖ(m). Conversely, for each pair (m, n) with
m ̸= 1 such that n < ϖ(m) there exists such a magma.

Proof.
We need m | gcd

({(m
2
)
, . . . ,

(m
n
)})

.
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RPS magmas

Definition (RPS magma)
Let A := (A, f) be an n-ary magma. When A is conservative,
essentially polyadic, strongly fair, and nondegenerate we say that A
is an RPS magma. When A is an n-magma of order m with these
properties we say that A is an RPS(m, n) magma. We also use
RPS and RPS(m, n) to indicate the classes of such magmas.

Both the original game of rock-paper-scissors and the game
rock-paper-scissors-Spock-lizard are RPS magmas. The French
variant of rock-paper-scissors is not even a PRPS magma.
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A game for three players

We now show how to construct a game for three players.
This will be a ternary RPS magma (A, f:A3 → A).
Since n = 3 in this case and we require that n < ϖ(m) we
must have that |A| ≥ 5.
Our construction will use the left-addition action of Z5 on
itself.
We will produce an operation f:Z3

5 → Z5 which is essentially
polyadic with w + f(x, y, z) = f(w + x,w + y,w + z) for any
w ∈ Z5.
Thus, we need only define f on a representative of each orbit
of

(Z5
1
)
,
(Z5

2
)
, and

(Z5
3
)

under this action of Z5.
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A game for three players

First we list the orbits of
(Z5

1
)
,
(Z5

2
)
, and

(Z5
3
)

under this action of
Z5.

0 01 02 012 013
1 12 13 123 124
2 23 24 234 230
3 34 30 340 341
4 40 41 401 402
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A game for three players

Next, we choose a representative for each orbit, say the first one in
each row of this table.

0 01 02 012 013
1 12 13 123 124
2 23 24 234 230
3 34 30 340 341
4 40 41 401 402
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A game for three players

Choose from each representative a particular element. For
example, if our representative is 013 we may choose 0 as our
special element. We also could have chosen 1 or 3, but not 2 or 4.

0 7→ 0 01 7→ 1 02 7→ 0 012 7→ 0 013 7→ 0
1 12 13 123 124
2 23 24 234 230
3 34 30 340 341
4 40 41 401 402



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A game for three players

Use the left-addition action of Z5 to extend these choices to all
members of

(Z5
1
)
,
(Z5

2
)
, and

(Z5
3
)
.

0 7→ 0 01 7→ 1 02 7→ 0 012 7→ 0 013 7→ 0
1 7→ 1 12 7→ 2 13 7→ 1 123 7→ 1 124 7→ 1
2 7→ 2 23 7→ 3 24 7→ 2 234 7→ 2 230 7→ 2
3 7→ 3 34 7→ 4 30 7→ 3 340 7→ 3 341 7→ 3
4 7→ 4 40 7→ 0 41 7→ 4 401 7→ 4 402 7→ 4
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A game for three players

We can read off a definition for the operation f:Z3
5 → Z5 from this

table. For example, we take 24 7→ 2 to indicate that

f(2, 4, 4) = f(4, 2, 4) = f(4, 4, 2) = f(4, 2, 2) = f(2, 4, 2) = f(2, 2, 4) = 2.

0 7→ 0 01 7→ 1 02 7→ 0 012 7→ 0 013 7→ 0
1 7→ 1 12 7→ 2 13 7→ 1 123 7→ 1 124 7→ 1
2 7→ 2 23 7→ 3 24 7→ 2 234 7→ 2 230 7→ 2
3 7→ 3 34 7→ 4 30 7→ 3 340 7→ 3 341 7→ 3
4 7→ 4 40 7→ 0 41 7→ 4 401 7→ 4 402 7→ 4
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A game for three players

The Cayley table for the 3-magma A := (Z5, f) obtained from this
choice of f is given below.

0 0 1 2 3 4
0 0 1 0 3 0
1 1 1 0 0 4
2 0 0 0 2 4
3 3 0 2 3 3
4 0 4 4 3 0

1 0 1 2 3 4
0 1 1 0 0 4
1 1 1 2 1 4
2 0 2 2 1 1
3 0 1 1 1 3
4 4 4 1 3 4

2 0 1 2 3 4
0 0 0 0 2 4
1 0 2 2 1 1
2 0 2 2 3 2
3 2 1 3 3 2
4 4 1 2 2 2

3 0 1 2 3 4
0 3 0 2 3 3
1 0 1 1 1 3
2 2 1 3 3 2
3 3 1 3 3 4
4 3 3 2 4 4

4 0 1 2 3 4
0 0 4 4 3 0
1 4 4 1 3 4
2 4 1 2 2 2
3 3 3 2 4 4
4 0 4 2 4 4
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α-action magmas

Definition (α-action magma)
Fix a group G, a set A, and some n < |A|. Given a regular group
action α:G → Perm(A) such that each of the k-extensions of α is
free for 1 ≤ k ≤ n let Ψk :=

{
Orb(U)

∣∣∣ U ∈
(A

k
)}

where Orb(U) is
the orbit of U under αk. Let β := {βk}1≤k≤n be a sequence of
choice functions βk: Ψk →

(A
k
)

such that βk(ψ) ∈ ψ for each
ψ ∈ Ψk. Let γ := {γk}1≤k≤n be a sequence of functions
γk: Ψk → A such that γk(ψ) ∈ βk(ψ) for each ψ ∈ Ψk. Let
g: Sb≤n(A) → A be given by g(U) := (α(s))(γk(ψ)) when
U = (αk(s))(βk(ψ)). Define f:An → A by
f(a1, . . . , an) := g({a1, . . . , an}). The α-action magma induced by
(β, γ) is A := (A, f).
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α-action magmas are RPS magmas

Theorem
Let A be an α-action magma induced by (β, γ). We have that
A ∈ RPS.

Definition (Regular RPS magma)
Let G be a nontrivial finite group and fix n < ϖ(|G|). We denote
by Gn(β, γ) the left-multiplication-action n-magma induced by
(β, γ), which we refer to as a regular RPS magma.
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Hypergraphs

Definition (Pointed hypergraph)
A pointed hypergraph S := (S, σ, g) consists of a hypergraph (S, σ)
and a map g:σ → S such that for each edge e ∈ σ we have that
g(e) ∈ e. The map g is called a pointing of (S, σ).

Definition (n-complete hypergraph)
Given a set S we denote by Sn the n-complete hypergraph whose
vertex set is S and whose edge set is

∪n
k=1

(S
k
)
.
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Hypertournaments

Definition (Hypertournament)
An n-hypertournament is a pointed hypergraph T := (T, τ, g)
where (T, τ) = Sn for some set S.

U 0 1 2 01 12 23 34 40 02 13 24 30 41
g(U) 0 1 2 1 2 3 4 0 0 1 2 3 4

U 012 123 234 340 401 013 124 230 341 402
g(U) 0 1 2 3 4 0 1 2 3 4

RPS(5, 3) example
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Hypertournament magmas

Definition (Hypertournament magma)
Given an n-hypertournament T := (T, τ, g) the hypertournament
magma obtained from T is the n-magma A := (T, f) where for
u1, . . . , un ∈ T we define

f(u1, . . . , un) := g({u1, . . . , un}).

Definition (Hypertournament magma)
A hypertournament magma is an n-magma which is conservative
and essentially polyadic.
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Tournaments

Tournaments are the n = 2 case of a hypertournament.
Hedrlín and Chvátal introduced the n = 2 case of a
hypertournament magma in 1965.
There has been a lot of work on varieties generated by
tournament magmas. See for example the survey by
Crvenković et al. (1999).
There are algebraic motivations for what follows, but I won’t
get into them now.
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An embedding result

Definition (Regular balanced hypertournament)
We refer to a hypertournament T := (T, τ, g) as a regular balanced
hypertournament when the hypertournament magma of T is a
regular RPS magma.

It would be very nice if each finite n-hypertournament
embedded into a finite regular balanced hypertournament.
This turns out to be the case.
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An embedding result

Note that in a regular binary RPS magma G2(β, γ) we have
that

f(e, x) = xf(x−1, e)

so exactly one of f(e, x) = e or f(x−1, e) = e holds.
Note also that the orbit of {x, y} contains

{
e, x−1y

}
and

y−1x, e, where x−1y and y−1x are inverses.
We need then only define a map λ specifying for each pair of
inverses

{
x, x−1} whether f(e, x) = e or f(e, x−1) = e in order

to specify G2(β, γ).
We can think of λ(

{
x, x−1}) as choosing the «positive

direction» with respect to x and x−1.
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An embedding result

In order to do this in general we need an n-ary analogue of inverses.

Definition (Obverse k-set)
Given n > 1, a nontrivial finite group G with n < ϖ(|G|),
1 ≤ k ≤ n− 1, and U,V ∈

(G\{e}
k

)
we say that V is an obverse of U

when U = {a1, . . . , ak} and there exists some ai ∈ U such that
V = {a−1

i } ∪ { a−1
i aj | i ̸= j }. We denote by Obv(U) the set

consisting of all obverses V of U, as well as U itself.

The obverses of a set U are the nonidentity elements in the
members of Orb(U ∪ {e}) \ (U ∪ {e}) which contain e.
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An embedding result

In order to specify Gn(β, γ) it suffices to choose the member
{a1, . . . , ak} of each collection of obverses for which
f(e, . . . , e, a1, . . . , ak) = e.

Definition (n-sign function)
Given n > 1 and a nontrivial group G with n < ϖ(|G|) let Sgnn(G)
denote the set of all choice functions on{

Obv(U)
∣∣∣∣ (∃k ∈ {1, . . . , n − 1})

(
U ∈

(
G \ {e}

k

))}
.

We refer to a member λ ∈ Sgnn(G) as an n-sign function on G.

We then write Gn(λ) instead of Gn(β, γ).
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An embedding result

Now we can give an embedding of any finite hypertournament
into a finite regular balanced hypertournament.
Consider a finite hypertournament T := (T, τ, g).
Take G :=

⊕
u∈T Zαu where n < ϖ(αu) and Zαu = ⟨u⟩.

We define an n-sign function λ ∈ Sgnn(G).
When g({u1, . . . , uk}) = u1 we define

λ(Obv({ ui − u1 | i ̸= 1 })) := { ui − u1 | i ̸= 1 }.

Any values may be chosen for other orbits.
The n-hypertournament corresponding to Gn(λ) contains a
copy of T.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

An embedding result

If we want a class of finite regular balanced hypertournaments
in which any finite hypertournament embeds, we need only
use magmas of the form Gn(λ) where:

1 G = Zm
κ(n) where κ(n) is the least prime strictly greater than n

or
2 G = Zα(m) where α(m) :=

∏m+ℓ−1
k=ℓ pk where pk is the kth

prime and κ(n) = pℓ.

In particular, every tournament of order m embeds into the
tournament corresponding to some regular RPS magma of the
form (Zm

3 )2(λ).
This means that any tournament of order m embeds into
some balanced tournament of order 3m.
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An embedding result

Definition (Balanced hypertournament)
We say that a hypertournament T is balanced when the
hypertournament magma of T is an RPS magma.

Let hn(m) denote the least natural such that each
n-hypertournament of order m is contained in some balanced
n-hypertournament of order hn(m).
Our previous observation was that h2(m) ≤ 3m.
We can do much better than this.
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An embedding result

Proposition
Every tournament of order m embeds into a balanced tournament
of order 2m + 1.

(I drew a picture to prove this when I gave the talk.)
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An embedding result

Proposition
Every tournament of order m embeds into a balanced tournament
of order 2m + 1.

One can show by example that h2(m) ≥ 2m − 1.
A similar construction to the one given previously shows that
h2(m) ≤ 2m − 1 so h2(m) = 2m − 1.
I only produced the construction given for general
hypertournaments once I found that I couldn’t see how to
generalize the doubling construction from the n = 2 case.
It would be interesting to know whether the argument
generalizes.
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An embedding result

By the general embedding result we know that
hn(m) ≤ κ(n)m.
For n > 2 is this the best bound possible?
Are there some easy examples like in the n = 2 case which
give a lower bound?
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Thank you.


